Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Multi-component quantum gases in spin-dependent hexagonal lattices

Abstract

In solid-state materials, the static and dynamic properties as well as the magnetic and electronic characteristics are crucially influenced by the crystal symmetry. Hexagonal structures play a particularly important role and lead to novel physics, such as that of carbon nanotubes or graphene. Here we report on the realization of ultracold atoms in a spin-dependent optical lattice with hexagonal symmetry. We show how the combined effects of the lattice and interactions between atoms lead to a forced antiferromagnetic Néel order when two spin-components localize at different lattice sites. We also demonstrate that the coexistence of two components—one Mott-insulating and the other one superfluid—leads to an interaction-induced modulation of the superfluid density, which is observed spectroscopically. Our studies reveal the vast impact of the interaction-induced modulation on the superfluid-to-Mott-insulator transition. The observations are consistent with theoretical predictions using Gutzwiller mean-field theory.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Spin-dependent hexagonal lattice.
Figure 2: Microwave spectroscopy measurements.
Figure 3: Superfluid order parameter at σ+ and σ lattice sites.
Figure 4: Superfluid-to-Mott-insulator transition for pure and mixed atomic spin-states.
Figure 5: Phase diagram of the multi-component Bose–Hubbard model.

References

  1. 1

    Jaksch, D., Bruder, C., Cirac, J. I., Gardiner, C. W. & Zoller, P. Cold bosonic atoms in optical lattices. Phys. Rev. Lett. 81, 3108–3111 (1998).

    ADS  Article  Google Scholar 

  2. 2

    Greiner, M., Mandel, O., Esslinger, T., Hänsch, T. W. & Bloch, I. Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms. Nature 415, 39–44 (2002).

    ADS  Article  Google Scholar 

  3. 3

    Trotzky, S. et al. Time-resolved observation and control of superexchange interactions with ultracold atoms in optical lattices. Science 319, 295–299 (2008).

    ADS  Article  Google Scholar 

  4. 4

    Lewenstein, M. et al. Ultracold atomic gases in optical lattices: Mimicking condensed matter physics and beyond. Adv. Phys. 56, 243–379 (2007).

    ADS  Article  Google Scholar 

  5. 5

    Bloch, I., Dalibard, J. & Zwerger, W. Many-body physics with ultracold gases. Rev. Mod. Phys. 80, 885–964 (2008).

    ADS  Article  Google Scholar 

  6. 6

    Jaksch, D., Briegel, H. J., Cirac, J. I., Gardiner, C. W. & Zoller, P. Entanglement of atoms via cold controlled collisions. Phys. Rev. Lett. 82, 1975–1978 (1999).

    ADS  Article  Google Scholar 

  7. 7

    Mandel, O. et al. Controlled collisions for multi-particle entanglement of optically trapped atoms. Nature 425, 937–940 (2003).

    ADS  Article  Google Scholar 

  8. 8

    Lee, P. J. et al. Sublattice addressing and spin-dependent motion of atoms in a double-well lattice. Phys. Rev. Lett. 99, 020402 (2007).

    ADS  Article  Google Scholar 

  9. 9

    Lin, Y-J. et al. Bose–Einstein condensate in a uniform light-induced vector potential. Phys. Rev. Lett. 102, 130401 (2009).

    ADS  Article  Google Scholar 

  10. 10

    Lin, Y-J., Compton, R. L., Jiménez-García, K., Porto, J. V. & Spielman, I. B. Synthetic magnetic fields for ultracold neutral atoms. Nature 462, 628–632 (2009).

    ADS  Article  Google Scholar 

  11. 11

    McKay, D. & DeMarco, B. Thermometry with spin-dependent lattices. New J. Phys. 12, 055013 (2010).

    ADS  Article  Google Scholar 

  12. 12

    Snoek, M. & Hofstetter, W. Two-dimensional dynamics of ultracold atoms in optical lattices. Phys. Rev. A 76, 051603 (2007).

    ADS  Article  Google Scholar 

  13. 13

    Wu, C., Bergman, D., Balents, L. & Das Sarma, S. Flat bands and Wigner crystallization in the honeycomb optical lattice. Phys. Rev. Lett. 99, 070401 (2007).

    ADS  Article  Google Scholar 

  14. 14

    Wu, C. & Das Sarma, S. p x,y-orbital counterpart of graphene: Cold atoms in the honeycomb optical lattice. Phys. Rev. B 77, 235107 (2008).

    ADS  Article  Google Scholar 

  15. 15

    Lee, K. L., Grémaud, B., Han, R., Englert, B-G. & Miniatura, C. Ultracold fermions in a graphene-type optical lattice. Phys. Rev. A 80, 043411 (2009).

    ADS  Article  Google Scholar 

  16. 16

    Eckardt, A. et al. Frustrated quantum antiferromagnetism with ultracold bosons in a triangular lattice. Europhys. Lett. 89, 10010 (2010).

    ADS  Article  Google Scholar 

  17. 17

    Iijima, S. Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991).

    ADS  Article  Google Scholar 

  18. 18

    Geim, A. & Novoselov, K. The rise of graphene. Nature Mater. 6, 183–191 (2007).

    ADS  Article  Google Scholar 

  19. 19

    Du, X., Skachko, I., Duerr, F., Luican, A. & Andrei, E. Y. Fractional quantum Hall effect and insulating phase of Dirac electrons in graphene. Nature 462, 192–195 (2009).

    ADS  Article  Google Scholar 

  20. 20

    Grimm, R., Weidemüller, M. & Ovchinnikov, Y. B. Optical dipole traps for neutral atoms. Adv. At. Mol. Opt. Phys. 42, 95–170 (2000).

    ADS  Article  Google Scholar 

  21. 21

    Förster, L. et al. Microwave control of atomic motion in optical lattices. Phys. Rev. Lett. 103, 233001 (2009).

    ADS  Article  Google Scholar 

  22. 22

    Büchler, H. P. & Blatter, G. Supersolid versus phase separation in atomic Bose–Fermi mixtures. Phys. Rev. Lett. 91, 130404 (2003).

    ADS  Article  Google Scholar 

  23. 23

    Titvinidze, I., Snoek, M. & Hofstetter, W. Supersolid Bose–Fermi mixtures in optical lattices. Phys. Rev. Lett. 100, 100401 (2008).

    ADS  Article  Google Scholar 

  24. 24

    Gerbier, F. et al. Interference pattern and visibility of a Mott insulator. Phys. Rev. A 72, 053606 (2005).

    ADS  Article  Google Scholar 

  25. 25

    Inouye, S. et al. Observation of Feshbach resonances in a Bose–Einstein condensate. Nature 392, 151–154 (1998).

    ADS  Article  Google Scholar 

  26. 26

    Doniach, S. Quantum fluctuations in two-dimensional superconductors. Phys. Rev. B 24, 5063–5070 (1981).

    ADS  Article  Google Scholar 

  27. 27

    Sachdev, S. Quantum Phase Transitions (Cambridge Univ. Press, 1999).

    MATH  Google Scholar 

  28. 28

    Günter, K., Stöferle, T., Moritz, H., Köhl, M. & Esslinger, T. Bose–Fermi mixtures in a three-dimensional optical lattice. Phys. Rev. Lett. 96, 180402 (2006).

    ADS  Article  Google Scholar 

  29. 29

    Ospelkaus, S. et al. Localization of bosonic atoms by fermionic impurities in a three-dimensional optical lattice. Phys. Rev. Lett. 96, 180403 (2006).

    ADS  Article  Google Scholar 

  30. 30

    Pepino, R. A., Cooper, J., Anderson, D. Z. & Holland, M. J. Atomtronic circuits of diodes and transistors. Phys. Rev. Lett. 103, 140405 (2009).

    ADS  Article  Google Scholar 

  31. 31

    Catani, J. et al. Entropy exchange in a mixture of ultracold atoms. Phys. Rev. Lett. 103, 140401 (2009).

    ADS  Article  Google Scholar 

  32. 32

    Bermudez, A., Goldman, N., Kubasiak, A., Lewenstein, M. & Martin-Delgado, M. Topological phase transitions in the non-Abelian honeycomb lattice. New J. Phys. 12, 033041 (2010).

    ADS  Article  Google Scholar 

  33. 33

    Becker, C. et al. Ultracold quantum gases in triangular optical lattices. New J. Phys. 12, 065025 (2010).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

We thank D-S. Lühmann and A. Eckardt for stimulating discussions. The work has been performed within the Excellence Cluster Frontiers in Quantum Photon Science, which is supported by the Joachim Herz Stiftung. Moreover, we thank the Deutsche Forschungsgemeinschaft DFG for financial support within the Forschergruppe FOR801 and the GRK 1355. Support by the Spanish MICINN (FIS2008-00784 and Consolider QOIT), the Alexander von Humboldt foundation, Caixa Manresa, ERC grant QUAGATUA, EU STREP NAMEQUAM, and by the EU Integrated Project AQUTE are gratefully acknowledged. M.L. acknowledges support by the Hamburger Preis für Theoretische Physik.

Author information

Affiliations

Authors

Contributions

The experimental work and data analysis were done by P.S-P., J.S., A.B., W.P., G.M., C.B., P.W. and K.S. Theoretical calculations using the Gutzwiller mean-field theory were done by P.H. and M.L. All authors contributed to the written text.

Corresponding author

Correspondence to K. Sengstock.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 302 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Soltan-Panahi, P., Struck, J., Hauke, P. et al. Multi-component quantum gases in spin-dependent hexagonal lattices. Nature Phys 7, 434–440 (2011). https://doi.org/10.1038/nphys1916

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing