Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Ultrafast optical control of entanglement between two quantum-dot spins

Abstract

The interaction between two quantum bits enables the creation of entanglement, the two-particle correlations that are at the heart of quantum information science. In semiconductor quantum dots, much work has focused on demonstrating control over single spin qubits using optical techniques. However, optical control of two spin qubits remains a major challenge for scaling to a fully fledged quantum-information platform. Here, we combine advances in vertically stacked quantum dots with ultrafast laser techniques to achieve optical control of the entangled state of two electron spins. Each electron is in a separate InAs quantum dot, and the spins interact through tunnelling, where the tunnelling rate determines how rapidly entangling operations can be carried out. We achieve two-qubit gates with an interaction rate of 30 GHz, more than an order of magnitude faster than demonstrated in any other system so far. These results demonstrate the viability and advantages of optically controlled quantum-dot spins for multi-qubit systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sample structure.
Figure 2: Energy levels of the 2e system.
Figure 3: Optical spin pumping of the two-electron state.
Figure 4: Coherent control of the 2e spin state using two 13 ps pulses with a variable time delay.
Figure 5: Two-qubit phase gate.

Similar content being viewed by others

References

  1. Lloyd, S. A potentially realizable quantum computer. Science 261, 1569–1571 (1993).

    Article  ADS  Google Scholar 

  2. Warburton, R. J. et al. Optical emission from a charge-tunable quantum ring. Nature 405, 926–929 (2000).

    Article  ADS  Google Scholar 

  3. Englund, D., Faraon, A., Zhang, B., Yamamoto, Y. & Vuckovic, J. Generation and transfer of single photons on a photonic chip. Opt. Express 15, 5550–5558 (2007).

    Article  ADS  Google Scholar 

  4. Kiravittaya, S., Rastelli, A. & Schmidt, O. G. Advanced quantum dot configurations. Rep. Prog. Phys. 72, 046502 (2009).

    Article  ADS  Google Scholar 

  5. Cirac, J. I., Zoller, P., Kimble, H. J. & Mabuchi, H. Quantum state transfer and entanglement distribution among distant nodes in a quantum network. Phys. Rev. Lett. 78, 3221–3224 (1997).

    Article  ADS  Google Scholar 

  6. Benjamin, S. C., Lovett, B. J. & Smith, J. M. Prospects for measurement-based quantum computing with solid state spins. Laser Photon. Rev. 3, 556–574 (2009).

    Article  ADS  Google Scholar 

  7. Chen, P., Piermarocchi, C. & Sham, L. J. Control of exciton dynamics in nanodots for quantum operations. Phys. Rev. Lett. 87, 067401 (2001).

    Article  ADS  Google Scholar 

  8. Bonadeo, N. H. et al. Coherent optical control of the quantum state of a single quantum dot. Science 282, 1473–1476 (1998).

    Article  Google Scholar 

  9. Stievater, T. H. et al. Rabi oscillations of excitons in single quantum dots. Phys. Rev. Lett. 87, 133603 (2001).

    Article  ADS  Google Scholar 

  10. Zrenner, A. et al. Coherent properties of a two-level system based on a quantum-dot photodiode. Nature 418, 612–614 (2002).

    Article  ADS  Google Scholar 

  11. Li, X. et al. An all-optical quantum gate in a semiconductor quantum dot. Science 301, 809–811 (2003).

    Article  ADS  Google Scholar 

  12. Kroutvar, M. et al. Optically programmable electron spin memory using semiconductor quantum dots. Nature 432, 81–84 (2004).

    Article  ADS  Google Scholar 

  13. Greilich, A. et al. Nuclei-induced frequency focusing of electron spin coherence. Science 317, 1896–1899 (2007).

    Article  ADS  Google Scholar 

  14. Xu, X. et al. Optically controlled locking of the nuclear field via coherent dark-state spectroscopy. Nature 459, 1105–1109 (2009).

    Article  ADS  Google Scholar 

  15. Brunner, D. et al. A coherent single-hole spin in a semiconductor. Science 325, 70–72 (2009).

    Article  ADS  Google Scholar 

  16. Press, D. et al. Ultrafast optical spin echo in a single quantum dot. Nature Photon. 4, 367–370 (2010).

    Article  ADS  Google Scholar 

  17. Imamoglu, A. et al. Quantum information processing using quantum dot spins and cavity QED. Phys. Rev. Lett. 83, 4204–4207 (1999).

    Article  ADS  Google Scholar 

  18. Atature, M. et al. Quantum-dot spin-state preparation with near-unity fidelity. Science 312, 551–553 (2006).

    Article  ADS  Google Scholar 

  19. Xu, X. et al. Fast spin state initialization in a singly charged InAs–GaAs quantum dot by optical cooling. Phys. Rev. Lett. 99, 097401 (2007).

    Article  ADS  Google Scholar 

  20. Kim, D. et al. Optical spin initialization and nondestructive measurement in a quantum dot molecule. Phys. Rev. Lett. 101, 236804 (2008).

    Article  ADS  Google Scholar 

  21. Atature, M., Dreiser, J., Badolato, A. & Imamoglu, A. Observation of Faraday rotation from a single confined spin. Nature Phys. 3, 101–105 (2007).

    Article  ADS  Google Scholar 

  22. Berezovsky, J., Mikkelson, M. H., Stoltz, N. G., Coldren, L. A. & Awschalom, D. D. Picosecond coherent optical manipulation of a single electron spin in a quantum dot. Science 320, 349–352 (2008).

    Article  ADS  Google Scholar 

  23. Ramsay, A. J. et al. Fast optical preparation, control, and readout of a single quantum dot spin. Phys. Rev. Lett. 100, 197401 (2008).

    Article  ADS  Google Scholar 

  24. Press, D., Ladd, T. D., Zhang, B. & Yamamoto, Y. Complete quantum control of a single quantum dot spin using ultrafast optical pulses. Nature 456, 218–221 (2008).

    Article  ADS  Google Scholar 

  25. Greilich, A. et al. Ultrafast optical rotations of electron spins in quantum dots. Nature Phys. 5, 262–266 (2009).

    Article  ADS  Google Scholar 

  26. Kim, E. D. et al. Fast spin rotations by optically controlled geometric phases in a charge-tunable InAs quantum dot. Phys. Rev. Lett. 104, 167401 (2010).

    Article  ADS  Google Scholar 

  27. Petta, J. R. et al. Coherent manipulation of coupled electron spins in semiconductor quantum dots. Science 309, 2180–2184 (2005).

    Article  ADS  Google Scholar 

  28. DiCarlo, L. et al. Demonstration of two-qubit algorithms with a superconducting quantum processor. Nature 460, 240–244 (2009).

    Article  ADS  Google Scholar 

  29. Neumann, P. et al. Quantum register based on coupled electron spins in a room-temperature solid. Nature Phys. 6, 249–253 (2010).

    Article  ADS  Google Scholar 

  30. Yao, W., Liu, R-B. & Sham, L. J. Theory of control of the spin-photon interface for quantum networks. Phys. Rev. Lett. 95, 030504 (2005).

    Article  ADS  Google Scholar 

  31. Clark, S. M., Fu, K-M. C., Ladd, T. D. & Yamamoto, Y. Quantum computers based on electron spins controlled by ultrafast off-resonant single optical pulses. Phys. Rev. Lett. 99, 040501 (2007).

    Article  ADS  Google Scholar 

  32. Piermarocchi, C., Chen, P., Sham, L. J. & Steel, D. G. Optical RKKY interaction between charged semiconductor quantum dots. Phys. Rev. Lett. 89, 167402 (2002).

    Article  ADS  Google Scholar 

  33. Calarco, T., Datta, A., Fedichev, P., Pazy, E. & Zoller, P. Spin-based all-optical quantum computation with quantum dots: Understanding and suppressing decoherence. Phys. Rev. A 68, 012310 (2003).

    Article  ADS  Google Scholar 

  34. Lovett, B. W. et al. Quantum computing with spin qubits interacting through delocalized excitons: Overcoming hole mixing. Phys. Rev. B 72, 115324 (2005).

    Article  ADS  Google Scholar 

  35. Emary, C. & Sham, L. J. Optically controlled logic gates for two spin qubits in vertically coupled quantum dots. Phys. Rev. B 75, 125317 (2007).

    Article  ADS  Google Scholar 

  36. Economou, S. E. & Reinecke, T. L. Optically induced spin gates in coupled quantum dots using the electron–hole exchange interaction. Phys. Rev. B 78, 115306 (2008).

    Article  ADS  Google Scholar 

  37. Bracker, A. S. et al. Engineering electron and hole tunneling with asymmetric InAs quantum dot molecules. Appl. Phys. Lett. 89, 233110 (2006).

    Article  ADS  Google Scholar 

  38. Stinaff, E. A. et al. Optical signatures of coupled quantum dots. Science 311, 636–639 (2006).

    Article  ADS  Google Scholar 

  39. Krenner, H. J. et al. Optically probing spin and charge interactions in a tunable artificial molecule. Phys. Rev. Lett. 97, 076403 (2006).

    Article  ADS  Google Scholar 

  40. Robledo, L. et al. Conditional dynamics of interacting quantum dots. Science 320, 772–775 (2008).

    Article  ADS  Google Scholar 

  41. Foletti, S., Bluhm, H., Mahalu, D., Umansky, V. & Yacoby, A. Universal quantum control of two-electron spin quantum bits using dynamic nuclear polarization. Nature Phys. 5, 903–908 (2009).

    Article  ADS  Google Scholar 

  42. Doty, M. F. et al. Optical spectra of doubly charged quantum dot molecules in electric and magnetic fields. Phys. Rev. B 78, 115316 (2008).

    Article  ADS  Google Scholar 

  43. Scheibner, M. et al. Spin fine structure of optically excited quantum dot molecules. Phys. Rev. B 75, 245318 (2007).

    Article  ADS  Google Scholar 

  44. Scheibner, M., Bracker, A. S., Kim, D. & Gammon, D. Essential concepts in the optical properties of quantum dot molecules. Solid State Commun. 149, 1427–1435 (2009).

    Article  ADS  Google Scholar 

  45. Economou, S. E. & Reinecke, T. L. Theory of fast optical spin rotation in a quantum dot based on geometric phases and trapped states. Phys. Rev. Lett. 99, 217401 (2007).

    Article  ADS  Google Scholar 

  46. Tureci, H. E., Taylor, J. M. & Imamoglu, A. Coherent optical manipulation of triplet–singlet states in coupled quantum dots. Phys. Rev. B 75, 235313 (2007).

    Article  ADS  Google Scholar 

  47. Vandersypen, L. M. K. & Chuang, I. L. NMR techniques for quantum control and computation. Rev. Mod. Phys. 76, 1037–1069 (2004).

    Article  ADS  Google Scholar 

  48. Koppens, F. H. L. et al. Driven coherent oscillations of a single electron spin in a quantum dot. Nature 442, 766–771 (2006).

    Article  ADS  Google Scholar 

  49. Neilsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information (Cambridge Univ. Press, 2000).

    Google Scholar 

  50. Economou, S. E., Lindner, N. & Rudolph, T. Optically generated 2-dimensional photonic cluster state from coupled quantum dots. Phys. Rev. Lett. 105, 093601 (2010).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by NSA/ARO, ARO MURI, DARPA and ONR.

Author information

Authors and Affiliations

Authors

Contributions

All authors were involved in writing the manuscript. D.K. was involved in all aspects. S.G.C. was involved with conceiving and carrying out the experiments, and analysing and modelling the data. A.G. was involved with sample development and characterization. A.S.B. was involved with sample fabrication, development and characterization. D.G. was involved with conceiving the experiment, sample development and data analysis.

Corresponding author

Correspondence to Daniel Gammon.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, D., Carter, S., Greilich, A. et al. Ultrafast optical control of entanglement between two quantum-dot spins. Nature Phys 7, 223–229 (2011). https://doi.org/10.1038/nphys1863

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys1863

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing