Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Femtosecond coherence and quantum control of single molecules at room temperature

Abstract

Quantum-mechanical phenomena, such as electronic coherence and entanglement, play a key role in several remarkably efficient natural processes including ultrafast electronic energy transfer and charge separation in photosynthetic light-harvesting. To gain insight into such dynamic processes of biomolecules it is vital to reveal relations between structural and quantum-mechanical properties. However, ensemble experiments targeting ultrafast coherences are hampered by the large intrinsic heterogeneity in these systems at physiological conditions, and single-molecule techniques have not been available until now. Here we show, by employing femtosecond pulse-shaping techniques, that quantum coherences in single organic molecules can be created, probed and manipulated at ambient conditions even in highly disordered solid environments. We find broadly distributed coherence decay times for different individual molecules giving direct insight into the structural heterogeneity of the local surroundings. Most importantly, we induce Rabi oscillations and control the coherent superposition state in a single molecule, thus carrying out a basic femtosecond single-qubit operation at room temperature.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Concept of the experiment.
Figure 2: Quantum coherence in single molecules: Coherence decay and Rabi oscillations.
Figure 3: Controlling the coherent superposition state of a single molecule.

References

  1. Ladd, T. D. et al. Quantum computers. Nature 464, 45–53 (2010).

    Article  ADS  Google Scholar 

  2. Buluta, I. & Nori, F. Quantum simulators. Science 326, 108–111 (2009).

    Article  ADS  Google Scholar 

  3. Bennett, C. H. & DiVincenzo, D. P. Quantum information and computation. Nature 404, 247–255 (2000).

    Article  ADS  Google Scholar 

  4. Hosaka, K. et al. Ultrafast Fourier transform with a femtosecond-laser-driven molecule. Phys. Rev. Lett. 104, 180501 (2010).

    Article  ADS  Google Scholar 

  5. Lee, H., Cheng, Y. C. & Fleming, G. R. Coherence dynamics in photosynthesis: Protein protection of excitonic coherence. Science 316, 1462–1465 (2007).

    Article  ADS  Google Scholar 

  6. Engel, G. S. et al. Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems. Nature 446, 782–786 (2007).

    Article  ADS  Google Scholar 

  7. Collini, E. et al. Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature. Nature 463, 644–647 (2010).

    Article  ADS  Google Scholar 

  8. Panitchayangkoon, G. et al. Long-lived quantum coherence in photosynthetic complexes at physiological temperature. Proc. Natl Acad. Sci. USA 107, 12766–12770 (2010).

    Article  ADS  Google Scholar 

  9. Scholes, G. D. Quantum-coherent electronic energy transfer: Did Nature think of it first? J. Phys. Chem. Lett. 1, 2–8 (2010).

    Article  Google Scholar 

  10. Sarovar, M., Ishizaki, A., Fleming, G. R. & Whaley, K. B. Quantum entanglement in photosynthetic light-harvesting complexes. Nature Phys. 6, 462–467 (2010).

    Article  ADS  Google Scholar 

  11. Abramavicius, D. & Mukamel, S. Quantum oscillatory exciton migration in photosynthetic reaction centres. J. Chem. Phys. 133, 064510 (2010).

    Article  ADS  Google Scholar 

  12. Mukamel, S. Signatures of quasiparticle entanglement in multidimensional nonlinear optical spectroscopy of aggregates. J. Chem. Phys. 132, 241105 (2010).

    Article  ADS  Google Scholar 

  13. van Dijk, E. M. H. P. et al. Single-molecule pump-probe detection resolves ultrafast pathways in individual and coupled quantum systems. Phys. Rev. Lett. 94, 078302 (2005).

    Article  ADS  Google Scholar 

  14. Brinks, D. et al. Visualizing and controlling vibrational wave packets of single molecules. Nature 465, 905–908 (2010).

    Article  ADS  Google Scholar 

  15. Gerhard, I. et al. Coherent state preparation and observation of Rabi oscillations in a single molecule. Phys. Rev. A 79, 011402 (2009).

    Article  ADS  Google Scholar 

  16. Wrigge, G. et al. Efficient coupling of photon to a single molecule and the observation of its resonance fluorescence. Nature Phys. 4, 60–66 (2008).

    Article  ADS  Google Scholar 

  17. Kamada, H. et al. Exciton Rabi oscillation in a single quantum dot. Phys. Rev. Lett. 87, 246401 (2001).

    Article  ADS  Google Scholar 

  18. Htoon, H. et al. Interplay of Rabi oscillations and quantum interference in semiconductor quantum dots. Phys. Rev. Lett. 88, 087401 (2002).

    Article  ADS  Google Scholar 

  19. Childress, L. et al. Coherent dynamics of coupled electron and nuclear spin qubits in diamond. Science 314, 281–285 (2006).

    Article  ADS  Google Scholar 

  20. Min, W. et al. Imaging chromophores with undetectable fluorescence by stimulated emission microscopy. Nature 461, 1105–1109 (2009).

    Article  ADS  Google Scholar 

  21. Chong, S., Min, W. & Xie, X. S. Ground-state depletion microscopy: Detection sensitivity of single-molecule optical absorption at room temperature. J. Phys. Chem. Lett. 1, 3316–3322 (2010).

    Article  Google Scholar 

  22. Kukura, P., Celebrano, M., Renn, A. & Sandoghdar, V. Single-molecule sensitivity in optical absorption at room temperature. J. Phys. Chem. Lett. 1, 3323–3327 (2010).

    Article  Google Scholar 

  23. Gaiduk, A., Yorulmaz, M., Ruijgrok, P. V. & Orrit, M. Room-temperature detection of a single molecule’s absorption by photothermal contrast. Science 330, 353–356 (2010).

    Article  ADS  Google Scholar 

  24. Feynman, R. P., Vernon, F. L. & Hellwarth, R. W. Geometrical representation of the Schrodinger equation for solving maser problems. J. Appl. Phys. 28, 49–52 (1957).

    Article  ADS  Google Scholar 

  25. Allen, L. & Eberly, J. H. Optical Resonance and Two-Level Atoms (Dover, 1987).

    Google Scholar 

  26. Loudon, R. The Quantum Theory of Light (Oxford Univ. Press, 2000).

    MATH  Google Scholar 

  27. Zewail, A. H. Optical molecular dephasing: Principles of and probings by coherent laser spectroscopy. Acc. Chem. Res. 13, 360–368 (1980).

    Article  Google Scholar 

  28. Schweitzer, G. et al. Intramolecular directional energy transfer processes in dendrimers containing perylene and terrylene chromophores. J. Phys. Chem. A 107, 3199–3207 (2007).

    Article  Google Scholar 

  29. Fourkas, J. T. et al. Picosecond time-scale phase-related optical pulses: Measurement of sodium optical coherence decay by observation of incoherent fluorescence. J. Opt. Soc. Am. B 6, 1905–1910 (1989).

    Article  ADS  Google Scholar 

  30. Brewer, R. G. & Genack, A. Z. Optical coherent transients by laser frequency switching. Phys. Rev. Lett. 36, 959–962 (1976).

    Article  ADS  Google Scholar 

  31. Balasubramanian, G. et al. Ultralong spin coherence time in isotopically engineered diamond. Nature Mater. 8, 383–387 (2009).

    Article  ADS  Google Scholar 

  32. Mais, S. et al. Terrylenediimide: A novel fluorophore for single-molecule spectroscopy and microscopy from 1.4 K to room temperature. J. Phys. Chem. A 101, 8435–8440 (1997).

    Article  Google Scholar 

  33. Macklin, J. J., Trautman, J. K., Harris, T. D. & Brus, L. E. Imaging and time-resolved spectroscopy of single molecules at an interface. Science 272, 255–258 (1996).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank T. H. Taminiau, F. D. Stefani and F. Kulzer for discussions and assistance with the experimental set-up, and K. Müllen for providing the molecules. Financial support by the Körber Foundation (Hamburg), the Spanish Ministry of Science and Innovation (CSD2007-046-NanoLight.es and MAT2006-08184) and the European Union (FP6, Bio-Light-Touch) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

R.H. carried out the measurements, analysed the data and conducted the simulations. D.B. and R.H. constructed the experimental set-up and carried out control experiments. R.H., D.B. and N.F.v.H. conceived and designed the experiment, and discussed the data. R.H. wrote the paper. N.F.v.H. supervised the project.

Corresponding author

Correspondence to Niek F. van Hulst.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 354 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hildner, R., Brinks, D. & van Hulst, N. Femtosecond coherence and quantum control of single molecules at room temperature. Nature Phys 7, 172–177 (2011). https://doi.org/10.1038/nphys1858

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys1858

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing