Glass transition with decreasing correlation length during cooling of Fe50Co50 superlattice and strong liquids

Abstract

The glass transition is usually understood as a structural arrest that occurs during the cooling of liquids, trapping the system before it can crystallize. It occurs for all liquid classes, including metals. Theoretical interest has focused on the dynamical heterogeneity encountered during supercooling of ‘fragile’ liquids. Many suggest that the slow-down is caused by increasing dynamical correlation lengths. Here we report kinetics and thermodynamics of arrest in a system that disorders while in its ground state, exhibits a large heat capacity change (ΔCp=Cp,mobileCp,arrested) on arrest, yet clearly is characterized by a static correlation length that decreases when approaching the transition temperature Tg from above. We show that our system, the Fe50Co50 superlattice, kinetically mimics an ideal ‘strong’ liquid with a critical point. Introducing liquid critical-point simulations, we can then argue that strong liquids differ from fragile liquids by occupying opposite flanks of an underlying order–disorder transition, which can be continuous, critical or weakly first order.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: The glass transition in the Fe50Co50 order–disorder transition.
Figure 2: DSC upscans at fixed 20 K min−1 rates, following cooling at different slower rates between 1.5 and 20 K min−1.
Figure 3: Comparison of equilibrium heat capacities, derived from the scans of enthalpy recovery (shown in the Supplementary Information), with data obtained from fixed scan rate runs and also the theoretical functions from the Bragg–Williams model and the Kirkwood approximation.
Figure 4: Heat capacities of BeF2 and SiO2 per g-atom through Tg compared with those for Fe50Co50 and for confined water.

References

  1. 1

    Angell, C. A. Formation of glasses from liquids and biopolymers. Science 267, 1924–1935 (1995).

    ADS  Article  Google Scholar 

  2. 2

    Busch, R, Schroers, J & Wang, W. H. Thermodynamics and kinetics of bulk metallic glass. MRS Bull. 32, 620–623 (2007).

    Article  Google Scholar 

  3. 3

    Martinez, L. M. & Angell, C. A. A thermodynamic connection to the fragility of glass-forming liquids. Nature 410, 663–667 (2001).

    ADS  Article  Google Scholar 

  4. 4

    Wang, L-M., Richert, R. & Angell, C. A. Fragility and thermodynamics in non-polymeric glassformers. J. Chem. Phys. 125, 074506 (2006).

    ADS  Article  Google Scholar 

  5. 5

    Richert, R. Heterogeneous dynamics in liquids: Fluctuations in space and time. J. Phys. Condens. Matter 14, R703–R738 (2002).

    ADS  Article  Google Scholar 

  6. 6

    Ediger, M. D. Spatially heterogeneous dynamics in supercooled liquids. Ann. Rev. Phys. Chem. 51, 99–128 (2000).

    ADS  Article  Google Scholar 

  7. 7

    Donati, C., Glotzer, S. C. & Poole, P. H. Growing spatial correlations of particle displacements in a simulated liquid on cooling toward the glass transition. Phys. Rev. Lett. 82, 5064–5067 (1999).

    ADS  Article  Google Scholar 

  8. 8

    Qiu, X. H. & Ediger, M. D. Lengthscale of dynamic heterogeneity in supercooled d-sorbitol: Comparison to model predictions. J. Phys. Chem. 107, 459–464 (2003).

    Article  Google Scholar 

  9. 9

    Donati, C. et al. Growing spatial correlations of particle displacements in a simulated liquid on cooling toward the glass transition. Phys. Rev. Lett. 82, 5064–5067 (1999).

    ADS  Article  Google Scholar 

  10. 10

    Reinsberg, S. A., Qui, X. H., Wilhelm, M., Spiess, H. W. & Ediger, M. D. Length scale of dynamic heterogeneity in supercooled glycerol near Tg . J. Chem. Phys. 114, 7299–7302 (2001).

    ADS  Google Scholar 

  11. 11

    Berthier, L. et al. Direct experimental evidence of a growing length scale accompanying the glass transition. Science 310, 1797–2000 (2005).

    ADS  Article  Google Scholar 

  12. 12

    Moynihan, C. T. & Schroeder, J. Non-exponential structural relaxation, anomalous light scattering and nanoscale inhomogeneities in glass forming liquids. J. Non-Cryst. Solids 160, 52–59 (1993).

    ADS  Article  Google Scholar 

  13. 13

    Tanaka, H., Kawasaki, T., Shintani, H. & Watanabe, K. Critical-like behavior of glass-forming liquids. Nature Mater. 9, 324–331 (2010).

    ADS  Article  Google Scholar 

  14. 14

    Angell, C. A. & Ueno, K. Soft is strong. Nature 462, 45–46 (2009).

    ADS  Article  Google Scholar 

  15. 15

    Angell, C. A. Insights into phases of liquid water from study of its unusual glass-forming properties. Science 319, 582–587 (2008).

    Article  Google Scholar 

  16. 16

    Scheidler, P., Kob, W., Latz, A., Horbach, J. & Binder, K. Frequency-dependent specific heat of viscous silica. Phys. Rev. B 63, 104204 (2005).

    ADS  Article  Google Scholar 

  17. 17

    Hemmati, M., Moynihan, C. T. & Angell, C. A. Interpretation of the molten BeF2 viscosity anomaly in terms of a high temperature density maximum, and other waterlike features. J. Chem. Phys. 115, 6663–6671 (2001).

    ADS  Article  Google Scholar 

  18. 18

    Ito, K., Moynihan, C. T. & Angell, C. A. Thermodynamic determination of fragility in liquids and a fragile-to-strong liquid transition in water. Nature 398, 492–495 (1999).

    ADS  Article  Google Scholar 

  19. 19

    Kaya, S. & Sato, H. Superstructuring in the iron–cobalt system and their magnetic properties. Proc. PhysicoMath. Soc. Jpn 25, 261–273 (1943).

    Google Scholar 

  20. 20

    Angell, C. A. Glass formation and glass transition in supercooled liquids, with insights from study of related phenomena in crystals. J. Non-Cryst. Solids 354, 4703–4712 (2008).

    ADS  Article  Google Scholar 

  21. 21

    Moynihan, C. T., Easteal, A. J., Debolt, M. A. & Tucker, J. Dependence of fictive temperature of glass on cooling rate. J. Amer. Ceram. Soc. 59, 12–16 (1976).

    Article  Google Scholar 

  22. 22

    Yue, Y. Z., von der Ohe, R. & Jensen, S. L. Fictive temperature, cooling rate, and viscosity of glasses. J. Chem. Phys. 120, 8053–8059 (2000).

    ADS  Article  Google Scholar 

  23. 23

    Xu, L-M., Buldyrev, S. V., Giovambattista, N., Angell, C. A. & Stanley, H. E. A monatomic system with a liquid–liquid critical point and two glassy states. J. Chem. Phys. 130, 054505 (2009).

    ADS  Article  Google Scholar 

  24. 24

    Wang, L. M., Velikov, V. & Angell, C. A. Direct determination of kinetic fragility indices of glassforming liquids by differential scanning calorimetry: Kinetic versus thermodynamic fragilities. J. Chem. Phys. 117, 10184–10192 (2002).

    ADS  Article  Google Scholar 

  25. 25

    Busch, R., Bakke, E. & Johnson, W. L. Viscosity of the supercooled liquid and relaxation at the glass transition of the Zr46.75Ti8.25Cu7.5Ni10Be27.5 bulk metallic glass forming alloy. Acta Mater. 46, 4725–4732 (1998).

    Article  Google Scholar 

  26. 26

    Fujimori, H. & Oguni, M. Correlation index (Tga−Tgb)/Tg and activation energy ratio as parameters characterising the structure of liquid and glass. Solid State Commun. 94 (1995).

  27. 27

    Busch, R. & Johnson, W. L. The kinetic glass transition of the Zr46.75Ti8.25Cu7.5Ni10Be27.5 bulk metallic glass former-supercooled liquids on a long timescale. Appl. Phys. Lett. 72, 2695–2697 (1998).

    ADS  Article  Google Scholar 

  28. 28

    Girifalco, L. A. Statistical Mechanics of Solids (Oxford Univ. Press, 2000).

    Google Scholar 

  29. 29

    Lipp, M. J. et al. Thermal signatures of the Kondo volume collapse in cerium. Phys. Rev. Lett 101, 165703 (2008).

    ADS  Article  Google Scholar 

  30. 30

    Xu, L.-M. et al. Relation between the Widom line and the dynamic crossover in systems with a liquid–liquid phase transition. Proc. Natl Acad. Sci. USA 102, 16558–16562 (2005).

    ADS  Article  Google Scholar 

  31. 31

    Angell, C. A. Water II is a strong liquid. J. Phys. Chem. 97, 6339–6341 (1993).

    Article  Google Scholar 

  32. 32

    Mallamace, F. et al. The fragile-to-strong dynamic crossover transition in confined water: Nuclear magnetic resonance results. J. Chem. Phys. 124, 161102 (2006).

    ADS  Article  Google Scholar 

  33. 33

    Liu, L. et al. Pressure dependence of fragile-to-strong transition and a possible second critical point in supercooled confined water. J. Chem. Phys. 95, 117802 (2005).

    Google Scholar 

  34. 34

    Zhang, Y. et al. Dynamic susceptibility of supercooled water and its relation to the dynamic crossover phenomenon. Phys. Rev. E 79, 040201 (2009).

    ADS  Article  Google Scholar 

  35. 35

    Bosio, L., Teixeira, J. & Stanley, H. E. Enhanced density fluctuations in water analysed by neutron scattering. Phys. Rev. Lett. 46, 597–600 (1981).

    ADS  Article  Google Scholar 

  36. 36

    Xie, Y. et al. Noncritical behaviour of density fluctuations in supercooled water. Phys. Rev. Lett. 71, 2050–2053 (1993).

    ADS  Article  Google Scholar 

  37. 37

    Huang, C. et al. The inhomogeneous structure of water at ambient conditions. Proc. Natl Acad. Sci. USA 106, 15214–15218 (2009).

    ADS  Article  Google Scholar 

  38. 38

    Moore, E. B. & Molinero, V. Growing correlation length in supercooled water. J. Chem. Phys. 130, 244505 (2009).

    ADS  Article  Google Scholar 

  39. 39

    Poole, P. H., Hemmati, M. & Angell, C. A. Comparison of thermodynamic properties of simulated liquid silica and water. Phys. Rev. Lett. 79, 2281–2284 (1997).

    ADS  Article  Google Scholar 

  40. 40

    Kim, K. Y. Calorimetric Studies on Argon and Hexafluoro Ethane and a Generalized Correlation of Maxima in Isobaric Heat Capacity 20. (1974), (Technical report, Department of Chemical Engineering, Michigan University) http://deepblue.lib.umich.edu/handle/2027.42/6003.

  41. 41

    Bockris, J. O., McKenzie, J. D. & Kitchener, J. A. Viscous flow in silica and binary liquid silicates. Trans. Faraday Soc. 51, 1734–1748 (1955).

    Article  Google Scholar 

  42. 42

    Saika-Voivod, I., Poole, P. H. & Sciortino, F. Fragile-to-strong transition and polyamorphism in the energy landscape of liquid silica. Nature 412, 514–517 (2001).

    ADS  Article  Google Scholar 

  43. 43

    Way, C., Wadhwa, P. & Busch, R. Influence of shear rate and temperature on the viscosity and fragility of the Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 metallic glass-forming liquid. Acta Mater. 55, 2977–2983 (2007).

    Article  Google Scholar 

  44. 44

    Zhang, C., Hu, L., Yue, Y-Z. & Mauro, J. C. Fragile-to-strong transition in metallic glass-forming liquids. J. Chem. Phys. 133, AN014508 (2010).

    ADS  Google Scholar 

  45. 45

    Tamura, S., Yokokawa, T. & Niwa, K. J. Enthalpy of beryllium fluoride from 456 to 1,083 K by transposed temperature drop calorimetry. J. Chem. Thermodyn. 7, 633–643 (1975).

    Article  Google Scholar 

  46. 46

    Sakaguchi, S. & Todoroki, S-I. Raleigh scattering of silica core optical fiber after heat treatment. Appl. Opt. 37, 7708–7711 (1998).

    ADS  Article  Google Scholar 

  47. 47

    Berthier, L. Revisiting the slow dynamics of a silica melt using Monte Carlo simulations. Phys. Rev. E 76, 011507 (2007).

    ADS  Article  Google Scholar 

  48. 48

    Matyushov, D. & Angell, C. A. Gaussian excitations model for glassformer thermodynamics and dynamics. J. Chem. Phys. 126, AN094501 (2007).

    ADS  Article  Google Scholar 

  49. 49

    Dawson, K. J., Kearns, K. L., Yu, L. & Ediger, M. D. Physical vapor deposition as a route to hidden amorphous states. Proc. Natl Acad. Sci. USA 106, 15165–15170 (2009).

    ADS  Article  Google Scholar 

  50. 50

    Ishii, K., Nakayama, H., Hirabayashi, S. & Moriyama, R. Anomalously high-density glass of ethylbenzene prepared by vapor deposition at temperatures close to the glass-transition temperature. Chem. Phys. Lett. 459, 109–112 (2008).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

We appreciate support received from the Deutsche Forschungsgemeinschaft (DFG). C.A.A. acknowledges helpful discussions with M. D. Ediger and JY-Z. Yue.

Author information

Affiliations

Authors

Contributions

C.A.A. and R.B. conceived the project, I.G. and S.W. planned and carried out the experimental work, S.W. and I.G. analyzed the data, and C.A.A. wrote the paper with important literature and diagrammatic input from S.W. and advice from I.G. and R.B.

Corresponding author

Correspondence to C. Austen Angell.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1149 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wei, S., Gallino, I., Busch, R. et al. Glass transition with decreasing correlation length during cooling of Fe50Co50 superlattice and strong liquids. Nature Phys 7, 178–182 (2011). https://doi.org/10.1038/nphys1823

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing