Article | Published:

Built-in and induced polarization across LaAlO3/SrTiO3 heterojunctions

Nature Physics volume 7, pages 8086 (2011) | Download Citation

Subjects

Abstract

Ionic crystals terminated at oppositely charged polar surfaces are inherently unstable and expected to undergo surface reconstructions to maintain electrostatic stability. Essentially, an electric field that arises between oppositely charged atomic planes gives rise to a built-in potential that diverges with thickness. Here we present evidence of such a built-in potential across polar LaAlO3 thin films grown on SrTiO3 substrates, a system well known for the electron gas that forms at the interface. By carrying out tunnelling measurements between the electron gas and metallic electrodes on LaAlO3 we measure a built-in electric field across LaAlO3 of 80.1 meV Å−1. In addition, capacitance measurements reveal the presence of an induced dipole moment across the heterostructure. We foresee use of the ionic built-in potential as an additional tuning parameter in both existing and future device architectures, especially as atomic control of oxide interfaces gains widespread momentum.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    , & Polarity of oxide surfaces and nanostructures. Rep. Prog. Phys. 71, 016501 (2008).

  2. 2.

    & Berry-phase theory of polar discontinuities at oxide–oxide interfaces. Phys. Rev. B 80, 241103 (2009).

  3. 3.

    et al. Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures. J. Appl. Phys. 85, 3222–3233 (1999).

  4. 4.

    et al. Quantum hall effect in polar oxide heterostructures. Science 315, 1388–1391 (2007).

  5. 5.

    & A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface. Nature 427, 423–426 (2004).

  6. 6.

    et al. Atomic control of the SrTiO3 crystal surface. Science 266, 1540–1542 (1994).

  7. 7.

    , & Why some interfaces cannot be sharp. Nature Mater. 5, 204–209 (2006).

  8. 8.

    The stability of ionic crystal surfaces. J. Phys. C 12, 4977–4984 (1979).

  9. 9.

    , , , & Tunable quasi-two-dimensional electron gases in oxide heterostructures. Science 313, 1942–1945 (2006).

  10. 10.

    , , , & X-ray photoemission studies of the metal–insulator transition in LaAlO3/SrTiO3 structures grown by molecular beam epitaxy. Phys. Rev. B 80, 241107 (2009).

  11. 11.

    & Electronic phenomena at complex oxide interfaces: Insights from first principles. J. Phys.: Condens. Mater. 22, 043001 (2010).

  12. 12.

    et al. Origin of charge density at LaAlO3 on SrTiO3 heterointerfaces: Possibility of intrinsic doping. Phys. Rev. Lett. 98, 196802 (2007).

  13. 13.

    et al. Structural basis for the conducting interface between LaAlO3 and SrTiO3. Phys. Rev. Lett. 99, 155502 (2007).

  14. 14.

    , , & Oxygen-vacancy-induced charge carrier in n-type interface of LaAlO3 overlayer on SrTiO3: Interface versus bulk doping carrier. Preprint at  (2009).

  15. 15.

    , & The role of the band gaps in reconstruction of polar surfaces and interfaces. Preprint at  (2009).

  16. 16.

    A theory of electrical breakdown of solid dielectrics. Proc. R. Soc. A 145, 523–529 (1934).

  17. 17.

    et al. Polarization-induced Zener tunnel junctions in wide-band-gap heterostructures. Phys. Rev. Lett. 103, 026801 (2009).

  18. 18.

    & Polarity in oxide ultrathin films. J. Phys. Condens. Matter. (2008).

  19. 19.

    , , & Current–voltage characteristics of strained piezoelectric structures. J. Appl. Phys. 77, 1616–1620 (1995).

  20. 20.

    et al. Dielectric functions and optical bandgaps of high-K dielectrics for metal–oxide–semiconductor field-effect transistors by far ultraviolet spectroscopic ellipsometry. J. Appl. Phys. 91, 4500–4505 (2002).

  21. 21.

    et al. Electronic conductivity and structural distortion at the interface between insulators SrTiO3 and LaAlO3. Phys. Status Solidi 203, 2209–2214 (2006).

  22. 22.

    et al. Epitaxial LaAlO3 thin film on silicon: Structure and electronic properties. Appl. Phys. Lett. 90, 181925 (2007).

  23. 23.

    , , & Thickness dependence of the mobility at the LaAlO3/SrTiO3 interface. Appl. Phys. Lett. 94, 222111 (2009).

  24. 24.

    et al. Magnetic effects at the interface between non-magnetic oxides. Nature Mater. 427, 493–496 (2007).

  25. 25.

    , , , & Polarization-induced hole doping in wide-band-gap uniaxial semiconductor heterostructures. Science 327, 60–64 (2010).

  26. 26.

    et al. Schottky barrier engineering in III–V nitrides via the piezoelectric effect. Appl. Phys. Lett. 73, 1880–1882 (1998).

  27. 27.

    & Ionic relaxation contribution to the electronic reconstruction at the n-type LaAlO3/SrTiO3 interface. Phys. Rev. B 78, 205106 (2008).

  28. 28.

    , , & Ab initio study of the spontaneous polarization of pyroelectric BeO. Phys. Rev. Lett. 64, 1777–1780 (1990).

  29. 29.

    et al. Towards two-dimensional metallic behaviour at LaAlO3/SrTiO3 interfaces. Phys. Rev. Lett. 102, 216804 (2009).

  30. 30.

    et al. Dominant mobility modulation by the electric field effect at the LaAlO3/SrTiO3 interface. Phys. Rev. Lett. 103, 226802 (2009).

  31. 31.

    Physics of Semiconductor Devices 3 edn (Wiley-Interscience, 2006).

  32. 32.

    , , & Temperature-dependent polarity reversal in Au–Nb:SrTiO3 Schottky junctions. Phys. Rev. B 76, 155110 (2007).

  33. 33.

    , , & Termination control of the interface dipole in La0.7Sr0.3MnO3/Nb:SrTiO3 (001) Schottky junctions. Phys. Rev. B 79, 073101 (2009).

  34. 34.

    , , & Termination layer dependence of Schottky barrier height for La0.6Sr0.4MnO3/Nb:SrTiO3 heterojunctions. Phys. Rev. B 81, 235322 (2010).

  35. 35.

    & SrTiO3: An intrinsic quantum paraelectric below 4 K. Phys. Rev. B 19, 3593–3602 (1979).

  36. 36.

    , & Lead–zirconate–titanate based metal/ferroelectric/insulator/semiconductor structure for nonvolatile memories. J. Appl. Phys. 91, 5985–5996 (2002).

  37. 37.

    & Physics of the ferroelectric nonvolatile memory field effect transistor. J. Appl. Phys. 72, 5999–6010 (1992).

  38. 38.

    , , & Ferroelectric relaxation of the SrTiO3(100) surface. Phys. Rev. Lett. 62, 2009–2011 (1989).

  39. 39.

    & Avoiding the polarization catastrophe in LaAlO3 overlayers on SrTiO3(001) through polar distortion. Phys. Rev. Lett. 102, 107602 (2009).

  40. 40.

    , & Oxide superlattices with alternating p and n interfaces. Phys. Rev. B 80, 045425 (2009).

  41. 41.

    et al. Enhanced lattice polarization in SrTiO3/LaAlO3 superlattices measured using optical second-harmonic generation. Phys. Rev. B 80, 081106 (2009).

  42. 42.

    et al. Orbital reconstruction and the two-dimensional electron gas at the LaAlO3/SrTiO3 interface. Phys. Rev. Lett. 102, 166804 (2009).

  43. 43.

    et al. Interface structure of SrTiO3/LaAlO3 at elevated temperatures studied in situ by synchrotron X-rays. Phys. Rev. B 75, 235417 (2007).

  44. 44.

    et al. Room-temperature ferroelectricity in strained SrTiO3. Science 430, 758–761 (2004).

  45. 45.

    , , , & Strain-gradient-induced polarization in SrTiO3 single crystals. Phys. Rev. Lett. 99, 167601 (2007).

  46. 46.

    , , & Origin of metallic states at the heterointerface between the band insulators LaAlO3 and SrTiO3. Phys. Rev. Lett. 101, 026802 (2008).

  47. 47.

    & The internal electric field originating from the mismatch effect and its influence on ferroelectric thin film properties. J. Phys.: Condens. Matter. 16, 3517–3531 (2004).

  48. 48.

    & The concept of weak polarity: An application to the SrTiO3(001) surface. Surf. Sci. 365, 016501 (1996).

  49. 49.

    , , & Polarization-engineered removal of buffer leakage for GaN transistors. Appl. Phys. Lett. 96, 042102 (2010).

Download references

Acknowledgements

We thank J. H. Bardarson, M. Gajek and R. Dynes at UC Berkeley as well as X. Du at Stonybrook for discussions and comments on the manuscript. G.S-B. acknowledges support from the Japan Society for Promotion of Science (Award No. SP08057) and the US National Science Foundation (Award No. OISE0812816) as part of the 2008 E.A.P.S.I. fellowship program, under which this work was commenced. W.S. acknowledges support from the Dutch Organization for Scientific Research (NWO-Rubicon Grant). The work at Berkeley (R.R.) was supported by the US Department of Energy under contract No. DE-AC02-05CH1123. The work at Florida (A.F.H.) was supported by the US National Science Foundation under Grant No. 0404962.

Author information

Affiliations

  1. Department of Physics, University of California, Berkeley, California 94720, USA

    • Guneeta Singh-Bhalla
    • , Wolter Siemons
    •  & Ramamoorthy Ramesh
  2. Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA

    • Guneeta Singh-Bhalla
    • , Jayakanth Ravichandran
    •  & Ramamoorthy Ramesh
  3. Department of Advanced Materials Science, University of Tokyo, Kashiwa, Chiba 277-8561, Japan

    • Guneeta Singh-Bhalla
    • , Christopher Bell
    • , Yasuyuki Hikita
    •  & Harold Y. Hwang
  4. Department of Physics, University of Florida, Gainesville, Florida 32611, USA

    • Guneeta Singh-Bhalla
    •  & Arthur F. Hebard
  5. Japan Science and Technology Agency, Kawaguchi, 332-0012, Japan

    • Christopher Bell
    •  & Harold Y. Hwang
  6. Applied Science and Technology Graduate Group, University of California, Berkeley, California 94720, USA

    • Jayakanth Ravichandran
  7. Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California 94720, USA

    • Sayeef Salahuddin
  8. Department of Materials Science and Engineering, University of California, Berkeley, California 94720, USA

    • Ramamoorthy Ramesh

Authors

  1. Search for Guneeta Singh-Bhalla in:

  2. Search for Christopher Bell in:

  3. Search for Jayakanth Ravichandran in:

  4. Search for Wolter Siemons in:

  5. Search for Yasuyuki Hikita in:

  6. Search for Sayeef Salahuddin in:

  7. Search for Arthur F. Hebard in:

  8. Search for Harold Y. Hwang in:

  9. Search for Ramamoorthy Ramesh in:

Contributions

C.B. deposited the LaAlO3 films. G.S-B. prepared and measured the tunnel junctions with C.B., modelled the data with J.R. and analysed the JV curves with J.R. and W.S. S.S. simulated the JV curves within the non-equilibrium Green’s function approach. The manuscript was prepared by G.S-B. with assistance/input from C.B., J.R., W.S. and Y.H. H.Y.H., A.F.H. and G.S-B. contributed to conceptualizing the experiment. H.Y.H. provided insights and expertise on the LaAlO3/SrTiO3 interface, R.R. on ferroelectricity and A.F.H. on interpreting complex impedance.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Guneeta Singh-Bhalla.

Supplementary information

PDF files

  1. 1.

    Supplementary Information

    Supplementary Information

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nphys1814

Further reading