Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Commentary
  • Published:

Are biomechanical changes necessary for tumour progression?

Cell biophysics sheds some new light on cancer by approaching this complex problem from a materials science perspective.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cell softening and cell proliferation.
Figure 2: Tumour growth.
Figure 3: Individual and collective migration of malignant versus normal cells.
Figure 4: Contractile cells in breast tumours.

References

  1. Weinberg, R. A. The Biology of Cancer 1st edn (Garland Science, 2007).

    Google Scholar 

  2. Hurtley, S. M. Science 279, 459 (1998).

    Article  ADS  Google Scholar 

  3. Bausch, A. R. & Kroy, K. Nature Phys. 2, 231–238 (2006).

    Article  ADS  Google Scholar 

  4. Vogel, V. & Sheetz, M. Natl Rev. 7, 265–275 (2006).

    Article  Google Scholar 

  5. Friedl, P. & Wolf, K. Nature Rev. Cancer 3, 362–374 (2003).

    Article  Google Scholar 

  6. Van Vliet, K. J., Bao, G. & Suresh, S. Acta Mater. 51, 5881–5905 (2003).

    Article  Google Scholar 

  7. Hoffman, B. D., Massiera, G., Van Citters, K. M. & Crocker, J. C. Proc. Natl Acad. Sci. USA 103, 10259–10264 (2006).

    Article  ADS  Google Scholar 

  8. Puech, P. H., Poole, K., Knebel, D. & Müller, D. Ultramicroscopy 106, 637–644 (2006).

    Article  Google Scholar 

  9. Brunner, C., Niendorf, A. & Käs, J. Soft Matter 5, 2171–2178 (2009).

    Article  ADS  Google Scholar 

  10. Lekka, M., Laidler, P., Lekki, D. G. J., Stachura, Z. & Hrynkiewicz, A. Z. Eur. Biophys. J. 28, 312–316 (1999).

    Article  Google Scholar 

  11. Guck, J. et al. Biophys. J. 88, 3689–3698 (2005).

    Article  ADS  Google Scholar 

  12. Cross, S. E., Jin, Y-S., Rao, J. & Gimzewski, J. K. Nature Nanotech. 2, 780–783 (2007).

    Article  ADS  Google Scholar 

  13. Remmerbach, T. W. et al. Cancer Res. 69, 1728–1732 (2009).

    Article  Google Scholar 

  14. Sanger, J. W. Proc. Natl Acad. Sci. USA 72, 1913–1916 (1975).

    Article  ADS  Google Scholar 

  15. Lautenschläger, F. et al. Proc. Natl Acad. Sci. USA 106, 15696–15701 (2009).

    Article  ADS  Google Scholar 

  16. MacKintosh, F. C., Käs, J. & Janmey, P. A. Phys. Rev. Lett. 75, 4425–4428 (1995).

    Article  ADS  Google Scholar 

  17. Claessens, M. M. A. E., Tharmann, R., Kroy, K. & Bausch, A. R. Nature Phys. 2, 186–189 (2006).

    Article  ADS  Google Scholar 

  18. Helmlinger, G., Netti, P. A., Lichtenbeld, H. C., Melder, R. J. & Jain, R. K. Nature Biotechnol. 15, 778–783 (1997).

    Article  Google Scholar 

  19. Janmey, P. A., Euteneuer, U., Traub, P. & Schliwa, M. J. Cell Biol. 113, 155–160 (1991).

    Article  Google Scholar 

  20. Chen, M. H. et al. Mod. Pathol. 21, 1183–1191 (2008).

    Article  Google Scholar 

  21. Thomas, P. A. et al. Clin. Cancer Res. 5, 2698–2703 (1999).

    Google Scholar 

  22. Vernon, A. E. & LaBonne, C. Curr. Biol. 14, R719–R721 (2004).

    Article  Google Scholar 

  23. Basan, M., Risler, T., Joanny, J-F., Sastre-Garau, X. & Prost, J. HFSP J. 3, 265–272 (2009).

    Article  Google Scholar 

  24. Park, S., Cardenas, R., Käs, J. & Shih, C. K. Biophys. J. 89, 4330–4342 (2005).

    Article  Google Scholar 

  25. Whipple, R. A. et al. Cancer Res. 68, 5678–5688 (2008).

    Article  Google Scholar 

  26. Trepat, X. et al. Nature Phys. 5, 426–430 (2009).

    Article  ADS  Google Scholar 

  27. Foty, R. A. & Steinberg, M. Dev. Biol. 278, 255–263 (2005).

    Article  Google Scholar 

  28. Guevorkian, K., Colbert, M-J., Durth, M., Dufour, S. & Brochard-Wyart, F. Phys. Rev. Lett. 104, 218101 (2010).

    Article  ADS  Google Scholar 

  29. Duguay, D., Foty, R. A. & Steinberg, M. S. Dev. Biol. 253, 309–323 (2003).

    Article  Google Scholar 

  30. Basan, M., Idema, T., Lenz, M., Joanny, J-F. & Risler, T. Biophys. J. 98, 2770–2779 (2010).

    Article  ADS  Google Scholar 

  31. Mierke, C. T., Rösel, D., Fabry, B. & Brábek, J. Eur. J. Cell Biol. 87, 669–676 (2008).

    Article  Google Scholar 

  32. Höckel, M. et al. Lancet Oncol. 10, 683–692 (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josef A. Käs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fritsch, A., Höckel, M., Kiessling, T. et al. Are biomechanical changes necessary for tumour progression?. Nature Phys 6, 730–732 (2010). https://doi.org/10.1038/nphys1800

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys1800

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing