Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A quantum memory with telecom-wavelength conversion

Abstract

In a fibre-based quantum information network, telecom-wavelength transmission between quantum memory elements is required to minimize absorption. Owing to the paucity of suitable ground-state atomic transitions, a quantum memory interfaced with telecom light has not been previously realized. We report its demonstration by converting to telecom wavelength near-infrared light emitted on a ground-state transition. The conversion is achieved with a diamond configuration of atomic transitions, in an optically thick gas of cold rubidium. The quantum memory is also realized with cold rubidium, but confined in an optical lattice to suppress motional dephasing on a submillisecond timescale. We observe quantum memory lifetimes in excess of 0.1 s by laser compensation of the lattice light shifts that limited the previous generation of atomic memory to 7 ms. By measuring quantum correlations of light fields before and after telecom down-conversion, transmission and up-conversion, we demonstrate a basic memory element for a scalable, long-distance quantum network.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Essential elements of the atomic quantum memory with a telecom-photon interface.
Figure 2: Frequency-conversion characteristics.
Figure 3: Frequency-conversion efficiency η and noise level of the up-conversion telecom single-photon detector as a function of the intensity IIPIwI2 of pump I.
Figure 4: Illustration of the inhomogeneous differential Stark shift in optically trapped atoms and its compensation with two-photon transitions.
Figure 5: Retrieval efficiencies of classical light and single photons as a function of the storage period (T) for different trap depths (U0).

Similar content being viewed by others

References

  1. Briegel, H-J., Duer, W., Cirac, J. I. & Zoller, P. Quantum repeaters: The role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932–5935 (1998).

    Article  ADS  Google Scholar 

  2. Duan, L-M., Lukin, M., Cirac, J. I. & Zoller, P. Long-distance quantum communication with atomic ensembles and linear optics. Nature 414, 413–418 (2001).

    Article  ADS  Google Scholar 

  3. Chaneliere, T. et al. Quantum telecommunication based on atomic cascade transitions. Phys. Rev. Lett. 96, 093604 (2006).

    Article  ADS  Google Scholar 

  4. Zhao, R. et al. Long-lived quantum memory. Nature Phys. 5, 100–104 (2009).

    Article  ADS  Google Scholar 

  5. Dudin, Y. O. et al. Entanglement of a photon and an optical lattice spin-wave. Phys. Rev. Lett. 103, 020505 (2009).

    Article  ADS  Google Scholar 

  6. Kuzmich, A. et al. Generation of nonclassical photon pairs for scalable quantum communication with atomic ensembles. Nature 423, 731–734 (2003).

    Article  ADS  Google Scholar 

  7. van der Wal, C. H. et al. Atomic memory for correlated photon states. Science 301, 196–200 (2003).

    Article  ADS  Google Scholar 

  8. Matsukevich, D. N. & Kuzmich, A. Quantum state transfer between matter and light. Science 306, 663–666 (2004).

    Article  ADS  Google Scholar 

  9. Matsukevich, D. N. et al. Observation of dark-state polariton collapses and revivals. Phys. Rev. Lett. 96, 033601 (2006).

    Article  ADS  Google Scholar 

  10. Matsukevich, D. N. et al. Entanglement of remote atomic qubits. Phys. Rev. Lett. 96, 030405 (2006).

    Article  ADS  Google Scholar 

  11. Chen, Y. A. et al. Memory-built-in quantum teleportation with photonic and atomic qubits. Nature Phys. 4, 103–107 (2007).

    Article  ADS  Google Scholar 

  12. Simon, J., Tanji, H., Ghosh, S. & Vuletic, V. Single-photon bus connecting spin-wave quantum memories. Nature Phys. 3, 765–769 (2007).

    Article  ADS  Google Scholar 

  13. Laurat, J. et al. Heralded entanglement between atomic ensembles: Preparation, decoherence, and scaling. Phys. Rev. Lett. 99, 180504 (2007).

    Article  ADS  Google Scholar 

  14. Matsukevich, D. N., Maunz, P., Moehring, D. L., Olmschenk, S. & Monroe, C. Bell inequality violation with two remote atomic qubits. Phys. Rev. Lett. 100, 150404 (2008).

    Article  ADS  Google Scholar 

  15. McClelland, J. J. & Hanssen, J. L. Laser cooling without repumping: A magneto-optical trap for erbium atoms. Phys. Rev. Lett. 96, 143005 (2006).

    Article  ADS  Google Scholar 

  16. Lu, M., Youn, S-H. & Lev, B. Trapping ultracold dysprosium: A highly magnetic gas for dipolar physics. Phys. Rev. Lett. 104, 063001 (2010).

    Article  ADS  Google Scholar 

  17. Lauritzen, B. et al. Telecommunication-wavelength solid-state memory at the single photon level. Phys. Rev. Lett. 104, 080502 (2010).

    Article  ADS  Google Scholar 

  18. Ashby, N. et al. Testing local position invariance with four cesium-fountain primary frequency standards and four NIST hydrogen masers. Phys. Rev. Lett. 98, 070802 (2007).

    Article  ADS  Google Scholar 

  19. Jessen, P. S. & Deutsch, I. H. Optical lattices. Adv. At. Mol. Opt. Phys. 37, 95–136 (1996).

    Article  ADS  Google Scholar 

  20. Yavuz, D. D. et al. Fast ground state manipulation of neutral atoms in microscopic optical traps. Phys. Rev. Lett. 96, 063001 (2006).

    Article  ADS  Google Scholar 

  21. Kruse, J., Gierl, C., Schlosser, M. & Birkl, G. Reconfigurable site-selective manipulation of atomic quantum systems in two-dimensional arrays of dipole traps. Phys. Rev. A 81, 060308 (2010).

    Article  ADS  Google Scholar 

  22. Kuhr, S. et al. Analysis of dephasing mechanisms in a standing-wave dipole trap. Phys. Rev. A 72, 023406 (2005).

    Article  ADS  Google Scholar 

  23. Schnorrberger, U. et al. Electromagnetically induced transparency and light storage in an atomic Mott insulator. Phys. Rev. Lett. 103, 033003 (2009).

    Article  ADS  Google Scholar 

  24. Willis, R. T. et al. Four-wave mixing in the diamond configuration in an atomic vapour. Phys. Rev. A 79, 033814 (2009).

    Article  ADS  Google Scholar 

  25. Kaplan, A., Andersen, M. K. & Davidson, N. Suppression of inhomogeneous broadening in rf spectroscopy of optically trapped atoms. Phys. Rev. A 66, 045401 (2002).

    Article  ADS  Google Scholar 

  26. Grangier, P., Roger, G. & Aspect, A. Experimental evidence for a photon anticorrelation effect on a beam splitter: A new light on single-photon interferences. Europhys. Lett. 1, 173–179 (1986).

    Article  ADS  Google Scholar 

  27. Walls, D. F. & Milburn, G. J. Quantum Optics (Springer-Verlag, 1994).

    Book  Google Scholar 

  28. Lin, Y-W. et al. Using a pair of rectangular coils in the MOT for the production of cold atom clouds with large optical density. Opt. Express 16, 3753–3761 (2008).

    Article  ADS  Google Scholar 

  29. Ketterle, W., Davis, K. B., Joffe, M. A. & Pritchard, D. E. High densities of cold atoms in a dark spontaneous-force optical trap. Phys. Rev. Lett. 70, 2253–2256 (1993).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank D. N. Matsukevich for his contributions, and J. Blumoff and A. Marchenkova for experimental assistance. This work was supported by the Air Force Office of Scientific Research, the Office of Naval Research and the National Science Foundation.

Author information

Authors and Affiliations

Authors

Contributions

A.G.R., Y.O.D. and R.Z. designed and carried out the experiments and analysed the data, S.D.J. and H.H.J. carried out theoretical analysis, S.D.J. and A.G.R. wrote the Supplementary Information and A.K. and T.A.B.K. supervised the project and edited the manuscript.

Corresponding author

Correspondence to T. A. B. Kennedy.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 389 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Radnaev, A., Dudin, Y., Zhao, R. et al. A quantum memory with telecom-wavelength conversion. Nature Phys 6, 894–899 (2010). https://doi.org/10.1038/nphys1773

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys1773

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing