Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Loss of nodal quasiparticle integrity in underdoped YBa2Cu3O6+x

Abstract

A central question in the study of high-temperature superconductivity is whether this phenomenon is linked to the doped antiferromagnetic Mott insulator or whether it emerges from a Fermi-liquid state across the whole cuprate phase diagram. Discriminating between these orthogonal cases hinges on the quantitative determination of the elusive quasiparticle strength Z as a function of hole-doping p, from the heavily overdoped to the deeply underdoped regime. Here we show, by means of angle-resolved photoemission spectroscopy and an in situ doping technique, that the electronic structure of the overdoped metal (0.24≤p≤0.37) is in remarkable agreement with density functional theory and Fermi-liquid-like descriptions. However, below p≈0.10–0.15, we observe the loss of nodal quasiparticle integrity. This marks a clear departure from Fermi-liquid behaviour and a more rapid than expected crossover to Mott physics, indicating that the physical properties of underdoped cuprates are dominated by incoherent excitations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Fermi surface and band dispersion across the YBCO phase diagram.
Figure 2: Doping evolution of the gap in YBCO.
Figure 3: K evaporation: effective hole-doping determination.
Figure 4: Doping evolution of nodal kF,NB, kF,NAB, and ZN.

Similar content being viewed by others

References

  1. Zaanen, J., Sawatzky, G. A. & Allen, J. W. Band gaps and electronic structure of transition-metal compounds. Phys. Rev. Lett. 55, 418–421 (1985).

    Article  ADS  Google Scholar 

  2. Chen, C. T. et al. Electronic states in La2−xSrxCuO4+δ probed by soft-X-ray absorption. Phys. Rev. Lett. 66, 104–107 (1991).

    Article  ADS  Google Scholar 

  3. Meinders, M. B. J., Eskes, H. & Sawatzky, G. A. Spectral-weight transfer: Breakdown of low-energy-scale sum rules in correlated systems. Phys. Rev. B 48, 3916–3926 (1993).

    Article  ADS  Google Scholar 

  4. Kohsaka, Y. et al. An intrinsic bond-centred electronic glass with unidirectional domains in underdoped cuprates. Science 315, 1380–1385 (2007).

    Article  ADS  Google Scholar 

  5. Peets, D. C. et al. X-ray absorption spectra reveal the inapplicability of the single-band Hubbard model to overdoped cuprate superconductors. Phys. Rev. Lett. 103, 087402 (2009).

    Article  ADS  Google Scholar 

  6. Anderson, P. W. The resonating valence bond state in La2CuO4 and superconductivity. Science 235, 1196–1198 (1987).

    Article  ADS  Google Scholar 

  7. Doiron-Leyraud, N. et al. Quantum oscillations and the Fermi surface in an underdoped high-Tc superconductor. Nature 447, 565–568 (2007).

    Article  ADS  Google Scholar 

  8. Sebastian, S. E. et al. Fermi liquid behaviour in an underdoped high-Tc superconductor. Phys. Rev. B 81, 140505(R) (2010).

    Article  ADS  Google Scholar 

  9. Comanac, A., de Medici, L., Capone, M. & Millis, A. J. Optical conductivity and the correlation strength of high temperature copper-oxide superconductors. Nature Phys. 4, 287–290 (2008).

    Article  Google Scholar 

  10. Sachdev, S. Where is the quantum critical point in the cuprate superconductors? Phys. Status Solidi B 247, 537–543 (2010).

    Article  ADS  Google Scholar 

  11. Chakravarty, S. Key issues in theories of high-temperature superconductors. Preprint at http://arxiv.org/abs/1006.4180 (2010).

  12. Hossain, M. A. et al. In situ doping control of the surface of high-temperature superconductors. Nature Phys. 4, 527–531 (2008).

    Article  Google Scholar 

  13. Andersen, O. K., Liechtenstein, A. I., Jepsen, O. & Paulsen, F. LDA energy bands, low-energy Hamiltonians, t, t′′, t(k), and j . J. Phys. Chem. Solids 56, 1573–1591 (1995).

    Article  ADS  Google Scholar 

  14. Carrington, A. & Yelland, E. A. Band-structure calculations of Fermi-surface pockets in ortho-II YBa2Cu3O6.5 . Phys. Rev. B 76, 140508(R) (2007).

    Article  ADS  Google Scholar 

  15. Elfimov, I. S., Sawatzky, G. A. & Damascelli, A. Theory of Fermi-surface pockets and correlation effects in underdoped YBa2Cu3O6.5 . Phys. Rev. B 77, 060504(R) (2008).

    Article  ADS  Google Scholar 

  16. Pasanai, K. & Atkinson, W. A. Theory of (001) surface and bulk states in Y1−yCayBa2Cu3O7−d . Phys. Rev. B 81, 134501 (2010).

    Article  ADS  Google Scholar 

  17. Imada, M., Fujimori, A. & Tokura, Y. Metal–insulator transitions. Rev. Mod. Phys. 70, 1039–1263 (1998).

    Article  ADS  Google Scholar 

  18. Anderson, P. W. et al. The physics behind high-temperature superconducting cuprates: the ‘plain vanilla’ version of RVB. J. Phys.: Condens. Matter 16, R755–R769 (2004).

    Google Scholar 

  19. Yang, K. Y., Rice, T. M. & Zhang, F. C. Phenomenological theory of the pseudogap state. Phys. Rev. B 73, 174501 (2006).

    Article  ADS  Google Scholar 

  20. Haule, K. & Kotliar, G. Strongly correlated superconductivity: A plaquette dynamical mean-field theory study. Phys. Rev. B 76, 104509 (2007).

    Article  ADS  Google Scholar 

  21. Civelli, M. et al. Nodal–antinodal dichotomy and the two gaps of a superconducting doped Mott insulator. Phys. Rev. Lett. 100, 046402 (2008).

    Article  ADS  Google Scholar 

  22. Vidhyadhiraja, N. S., Macridin, A., Şen, C., Jarrell, M. & Ma, M. Quantum critical point at finite doping in the 2D Hubbard model: A dynamical cluster quantum Monte Carlo study. Phys. Rev. Lett. 102, 206407 (2009).

    Article  ADS  Google Scholar 

  23. Damascelli, A. Probing the electronic structure of complex systems by ARPES. Phys. Scr. T109, 61–74 (2004).

    Article  ADS  Google Scholar 

  24. Damascelli, A., Hussain, Z. & Shen, Z-X. Angle-resolved photoemission spectroscopy of the cuprate superconductors. Rev. Mod. Phys. 75, 473–541 (2003).

    Article  ADS  Google Scholar 

  25. Campuzano, J. C, Norman, M. R. & Randeria, M. Photoemission in the High-Tc Superconductors Vol. II, 167–265 (Springer, 2004).

    Google Scholar 

  26. Kanigel, A. et al. Evolution of the pseudogap from Fermi arcs to the nodal liquid. Nature Phys. 2, 447–451 (2006).

    Article  ADS  Google Scholar 

  27. Chatterjee, U. et al. Observation of a d-wave nodal liquid in highly underdoped Bi2Sr2CaCu2O8+δ . Nature Phys. 6, 99–103 (2010).

    Article  ADS  Google Scholar 

  28. Shen, Z.-X. & Sawatzky, G. A. Novel electronic structure of cuprate superconductors revealed by the anomalous spectral lineshape in ARPES experiments. Phys. Status Solidi B 215, 523–529 (1999).

    Article  ADS  Google Scholar 

  29. Feng, D. L. et al. Signature of superfluid density in the single-particle excitation spectrum of Bi2Sr2CaCu2O8+δ . Science 289, 277–281 (2000).

    Article  ADS  Google Scholar 

  30. Ding, H. et al. Coherent quasiparticle weight and its connection to high-Tc superconductivity from angle-resolved photoemission. Phys. Rev. Lett. 87, 227001 (2001).

    Article  ADS  Google Scholar 

  31. Kaminski, A. et al. Crossover from coherent to incoherent electronic excitations in the normal state of Bi2Sr2CaCu2O8+δ . Phys. Rev. Lett. 90, 207003 (2003).

    Article  ADS  Google Scholar 

  32. Platé, M. et al. Fermi surface and quasiparticle excitations of overdoped Tl2Ba2CuO6+δ by ARPES. Phys. Rev. Lett. 95, 159–168 (2005).

    Article  Google Scholar 

  33. Peets, D. C. et al. Tl2Ba2CuO6+δ brings spectroscopic probes deep into the overdoped regime of the high-Tc cuprates. New J. Phys. 9, 28 (2007).

    Article  ADS  Google Scholar 

  34. Lin, H., Sahrakorpi, S., Markiewicz, R. S. & Bansil, A. Raising Bi–O bands above the Fermi energy level of hole-doped Bi2Sr2CaCu2O8+δ and other cuprate superconductors. Phys. Rev. Lett. 96, 097001 (2006).

    Article  ADS  Google Scholar 

  35. Shen, K. M. et al. Nodal quasiparticles and antinodal charge ordering in Ca2−xNaxCuO2Cl2 . Science 307, 901–904 (2005).

    Article  ADS  Google Scholar 

  36. Lee, W. S. et al. Abrupt onset of a second energy gap at the superconducting transition of underdoped Bi2212. Nature 450, 81–84 (2007).

    Article  ADS  Google Scholar 

  37. Graf, J. et al. Universal high energy anomaly in the angle-resolved photoemission spectra of high temperature superconductors: possible evidence of spinon and holon branches. Phys. Rev. Lett. 98, 067004 (2007).

    Article  ADS  Google Scholar 

  38. Hüfner, S., Hossain, M. A., Damascelli, A. & Sawatzky, G. A. Two gaps make a high-temperature superconductor?. Rep. Prog. Phys. 71, 062501 (2008).

    Article  ADS  Google Scholar 

  39. Dimov, I., Goswami, P., Jia, X. & Chakravarty, S. Competing order, Fermi surface reconstruction, and quantum oscillations in underdoped high-temperature superconductors. Phys. Rev. B 78, 134529 (2008).

    Article  ADS  Google Scholar 

  40. Audouard, A. et al. Multiple quantum oscillations in the de Haas–van Alphen spectra of the underdoped high-temperature superconductor YBa2Cu3O6.5 . Phys. Rev. Lett. 103, 157003 (2009).

    Article  ADS  Google Scholar 

  41. Garcia-Aldea, D. & Chakravarty, S. Multiple quantum oscillation frequencies in YBa2Cu3O6+δ and bilayer splitting. Preprint at http://arxiv.org/abs/1003.2665 (2010).

  42. Ramshaw, B. J. et al. Spin-zeros in quantum oscillations in YBa2Cu3O6.59 limit the role of electron spin order in the pseudogap phase of high temperature superconductors. Preprint at http://arxiv.org/abs/1004.0260 (2010).

  43. Sénéchal, D. & Tremblay, A-M. S. Hot spots and pseudogaps for hole- and electron-doped high-temperature superconductors. Phys. Rev. Lett. 92, 126401 (2004).

    Article  ADS  Google Scholar 

  44. Maier, T., Jarrell, M., Pruschke, T. & Hettler, M. H. Quantum cluster theories. Rev. Mod. Phys. 77, 1027–1080 (2005).

    Article  ADS  Google Scholar 

  45. Phillips, P. Colloquium: Identifying the propagating charge modes in doped Mott insulators. Rev. Mod. Phys. 82, 1719–1742 (2010).

    Article  ADS  Google Scholar 

  46. Lee, Y. S. et al. Electrodynamics of the nodal metal in weakly doped high-Tc cuprates. Phys. Rev. B 72, 054529 (2005).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge W. A. Atkinson, J. P. Carbotte, D. Munzar, M. R. Norman, G. A. Sawatzky, T. Senthil and D. van der Marel for discussions. This work was supported by the Killam Program (A.D.), the A. P. Sloan Foundation (A.D.), the CRC Program (A.D.), NSERC, CFI, CIFAR Quantum Materials and BCSI. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under Contract No. DE-AC02-05CH11231.

Author information

Authors and Affiliations

Authors

Contributions

D.F. and A.D. conceived this investigation and are responsible for data analysis and interpretation. D.F. and G.L. carried out the ARPES experiments, with the assistance of J.L.M., A.B. and E.R. for the work at ALS. Y.P. carried out the STM experiments. R.L., W.N.H. and D.A.B. fabricated and characterized the samples. I.S.E. carried out the density functional theory calculations. All of the authors discussed the underlying physics and contributed to the manuscript. A.D. was responsible for overall project direction, planning, and management.

Corresponding authors

Correspondence to D. Fournier or A. Damascelli.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 325 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fournier, D., Levy, G., Pennec, Y. et al. Loss of nodal quasiparticle integrity in underdoped YBa2Cu3O6+x. Nature Phys 6, 905–911 (2010). https://doi.org/10.1038/nphys1763

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys1763

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing