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associated with the grain boundary, 
and then they formulate a model for 
the superconductivity to determine the 
current that flows through the device. In 
this model, they see current that often 
flows in the wrong direction, and that the 
net current clearly shows an exponential 
suppression with grain-boundary angle, 
even for large-angle grain boundaries. 
Previous theories that focused on how the 
d-wave superconducting order parameter 
was mismatched across the grain 
boundary3–5, or how grain boundaries 
create insulating regions6, cannot show this 

exponential suppression for large-angle 
grain boundaries.

Now that we understand the underlying 
reason for the suppression of the current, 
can we find ways to alleviate it and make 
a technologically viable wire? It is well 
known that calcium moves preferentially 
along, and can reduce the charge at, a 
grain boundary, thereby increasing the 
current7. Expect the next generation of 
calculations, then, to examine how calcium 
doping on a grain boundary could mend 
the distribution of charge and improve the 
supercurrent flow. ❐
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“The miracle of the appropriateness of 
the language of mathematics for the 
formulation of the laws of physics is a 
wonderful gift which we neither understand 
nor deserve”, wrote Eugene Wigner in the 
closing paragraph of his 1960 essay The 
Unreasonable Effectiveness of Mathematics 
in the Natural Sciences. But the application 
of mathematics to problems in physics 
can also, in turn, bring wider recognition 
to otherwise little-known mathematical 
concepts. Jean Mawhin and André Ronveaux 
describe a beautiful example of such 
interplay — the role of Laguerre polynomials 
in the study of the hydrogen atom (Arch. 
Hist. Exact Sci. 64, 429–460; 2010).

Laguerre polynomials famously describe 
the radial part of the solution of the 
Schrödinger equation for hydrogen-like 
atoms. In 1926, Erwin Schrödinger (right, 
with Werner Heisenberg and Paul Dirac, 
left) published a series of articles on 
‘quantization as an eigenvalue problem’, in 
which he solved his equation for a single 
electron evolving in a Coulomb potential. 
However, in the first paper, as Mawhin 
and Ronveaux write, Schrödinger used 
a “nowadays almost forgotten method 
for obtaining the wave equation for 
the hydrogen atom”. It was only in the 
second article — received by Annalen 
der Physik a month after the first — that 
Schrödinger started to make use of Laguerre 
polynomials. (Indeed, later, in the French 
translation of his book Abhandlungen zur 
Wellenmechanik, Schrödinger advised 
the reader to forget his first approach.) 
The third paper of the series, in which 
Schrödinger introduces his famous 
perturbation method, contains an appendix 
detailing the properties of generalized 
Laguerre polynomials.
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Ever since, Laguerre polynomials have 
appeared in textbooks whenever the 
Schrödinger equation is discussed. The 
same is not true, however, for solutions to 
the Dirac equation, the relativistic equation 
describing the hydrogen atom. Solutions 
expressed in terms of Laguerre polynomials 
were found shortly after Dirac’s seminal 
1928 paper, but seem to have been widely 
forgotten. Dirac himself didn’t solve 
the equations exactly in his paper, only 
approximately. Complete solutions came 
shortly afterwards, first from Walter Gordon 
and, independently, Charles Galton Darwin, 
and later from the British mathematician 
Frederick Bernard Pidduck, who in 1929 
explicitly used Laguerre polynomials to solve 
the equations — a contribution that, Mawhin 
and Ronveaux say, is often overlooked.

Laguerre polynomials owe much 
of their popularity to their role in the 
formal description of the hydrogen 
atom. Throughout the eighteenth 
and nineteenth centuries, a number 
of celebrated mathematicians 
made important contributions to 
the exploration of what we know 
today as Laguerre polynomials, 
including Joseph Louis Lagrange, 
Niels Henrik Abel, Robert Murphy, 
Pafnuty Chebyshev and, of course, 
Edmond Laguerre. But as these 
polynomials had few uses in classical 
mathematical physics, it was only with 
the advent of quantum mechanics that 
they rose, at last, to prominence.
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