Abstract
The symmetry of graphene’s two carbon sublattices underlies its unique electronic structure and half-integer quantum Hall effect. Quantized Hall resistance requires confinement of cyclotron orbits (Landau levels) in the sample interior. Such magnetic localization may be unique in graphene, especially for the fourfold-degenerate Landau level (LL0) straddling graphene’s charge-neutrality energy. Here we map the two-dimensional spatial distribution of LL0, using cryogenic scanning tunnelling spectroscopy to measure the local density of states (LDOS) on electronically decoupled multilayer epitaxial graphene. Unlike disordered LDOS patterns found in conventional quantum Hall systems, we find an organized pattern of localized states and extended states that emerge above a threshold magnetic field. In distinct regions, an energy gap associated with lattice-scale variations of the LDOS suggests the sublattice (and LL0 valley) degeneracy is locally lifted. We propose this occurs when cyclotron orbits become small enough to sample regions of small symmetry-breaking potential originating from a graphene-on-graphene moiré.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Spin-polarized magneto-electronic properties in buckled monolayer GaAs
Scientific Reports Open Access 20 February 2019
-
Electronic cooling via interlayer Coulomb coupling in multilayer epitaxial graphene
Nature Communications Open Access 24 September 2015
-
Imaging the dynamics of free-electron Landau states
Nature Communications Open Access 08 August 2014
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout





References
Davies, J. H. The Physics of Low-dimensional Semiconductors: An Introduction (Cambridge Univ. Press, 1998).
Ando, T. Electron localization in a two-dimensional system in strong magnetic fields. II: Long-range scatterers and response functions. J. Phys. Soc. Jpn 53, 3101–3111 (1984).
Huckestein, B. Scaling theory of the integer quantum Hall effect. Rev. Mod. Phys. 67, 357–396 (1995).
Zhang, Y., Tan, Y-W., Stormer, H. L. & Kim, P. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438, 201–204 (2005).
Novoselov, K. S. et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005).
Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S. & Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009).
Pereira, A. L. C. & Schulz, P. A. Valley polarization effects on localization in graphene Landau levels. Phys. Rev. B 77, 075416 (2008).
Beenakker, C. W. J. Colloquium: Andreev reflection and Klein tunneling in graphene. Rev. Mod. Phys. 80, 1337–1354 (2008).
Pereira, A. L. C. Splitting of critical energies in the n=0 Landau level of graphene. New J. Phys. 11, 095019 (2009).
Wu, X. et al. Half integer quantum Hall effect in high mobility single layer epitaxial graphene. Appl. Phys. Lett. 95, 223108 (2009).
Checkelsky, J. G., Li, L. & Ong, N. P. Divergent resistance at the Dirac point in graphene: Evidence for a transition in a high magnetic field. Phys. Rev. B 79, 115434 (2009).
Checkelsky, J. G., Li, L. & Ong, N. P. Zero-energy state in graphene in a high magnetic field. Phys. Rev. Lett. 100, 206801 (2008).
Jiang, Z., Zhang, Y., Stormer, H. L. & Kim, P. Quantum Hall states near the charge-neutral Dirac point in graphene. Phys. Rev. Lett. 99, 106802 (2007).
Zhang, Y. et al. Landau-level splitting in graphene in high magnetic fields. Phys. Rev. Lett. 96, 136806 (2006).
Feldman, B. E., Martin, J. & Yacoby, A. Broken-symmetry states and divergent resistance in suspended bilayer graphene. Nature Phys. 5, 889–893 (2009).
Zhao, Y., Cadden-Zimansky, P., Jiang, Z. & Kim, P. Symmetry breaking in the zero-energy Landau level in bilayer graphene. Phys. Rev. Lett. 104, 066801 (2010).
Du, X., Skachko, I., Duerr, F., Luican, A. & Andrei, E. Y. Fractional quantum Hall effect and insulating phase of Dirac electrons in graphene. Nature 462, 192–195 (2009).
Bolotin, K. I., Ghahari, F., Shulman, M. D., Stormer, H. L. & Kim, P. Observation of the fractional quantum Hall effect in graphene. Nature 462, 196–199 (2009).
Miller, D. L. et al. Observing the quantization of zero mass carriers in graphene. Science 324, 924–927 (2009).
Li, G., Luican, A. & Andrei, E. Y. Scanning tunneling spectroscopy of graphene on graphite. Phys. Rev. Lett. 102, 176804 (2009).
de Heer, W. A. et al. Epitaxial graphene. Solid State Commun. 143, 92–100 (2007).
First, P. N. et al. Epitaxial graphenes on silicon carbide. MRS Bull. 35, 296–305 (2010).
Hass, J. et al. Why multilayer graphene on behaves like a single sheet of graphene. Phys. Rev. Lett. 100, 125504 (2008).
Martin, J. et al. The nature of localization in graphene under quantum Hall conditions. Nature Phys. 5, 669–674 (2009).
Morgenstern, M., Klijn, J., Meyer, C., Haude, D. & Wiesendanger, R. in Scanning Tunneling Microscopy/Spectroscopy and Related Techniques: 12th International Conference (eds Koenraad, P. M. & Kemerink, M.) 11–19 (AIP Conference Proceedings, Vol. 696, AIP, 2003) http://link.aip.org/link/?APC/696/11/1.
Morgenstern, M., Klijn, J., Meyer, C. & Wiesendanger, R. Real-space observation of drift states in a two-dimensional electron system at high magnetic fields. Phys. Rev. Lett. 90, 056804 (2003).
Hashimoto, K. et al. Quantum Hall transition in real space: From localized to extended states. Phys. Rev. Lett. 101, 256802 (2008).
Niimi, Y., Kambara, H. & Fukuyama, H. Localized distributions of quasi-two-dimensional electronic states near defects artificially created at graphite surfaces in magnetic fields. Phys. Rev. Lett. 102, 026803 (2009).
Pan, S. H. et al. Microscopic electronic inhomogeneity in the high-Tc superconductor Bi2Sr2CaCu2O8+x . Nature 413, 282–285 (2001).
Poplavskyy, O., Goerbig, M. O. & Smith, C. M. Local density of states of electron-crystal phases in graphene in the quantum Hall regime. Phys. Rev. B 80, 195414 (2009).
Nomura, K., Ryu, S. & Lee, D-H. Field-induced Kosterlitz–Thouless transition in the n=0 Landau level of graphene. Phys. Rev. Lett. 103, 216801 (2009).
Luk’yanchuk, I. A. & Bratkovsky, A. M. Lattice-induced double-valley degeneracy lifting in graphene by a magnetic field. Phys. Rev. Lett. 100, 176404 (2008).
Hass, J., de Heer, W. A. & Conrad, E. H. The growth and morphology of epitaxial multilayer graphene. J. Phys. Condens. Matter 20, 323202 (2008).
Sprinkle, M. et al. First direct observation of a nearly ideal graphene band structure. Phys. Rev. Lett. 103, 226803 (2009).
Latil, S., Meunier, V. & Henrard, L. Massless fermions in multilayer graphitic systems with misoriented layers: Ab initio calculations and experimental fingerprints. Phys. Rev. B 76, 201402 (2007).
Lopes dos Santos, J. M. B., Peres, N. M. R. & Castro Neto, A. H. Graphene bilayer with a twist: Electronic structure. Phys. Rev. Lett. 99, 256802–256804 (2007).
Mele, E. J. Commensuration and interlayer coherence in twisted bilayer graphene. Phys. Rev. B 81, 161405(R) (2010).
Li, G. et al. Observation of van Hove singularities in twisted graphene layers. Nature Phys. 6, 109–113 (2010).
Miller, D. L. et al. Structural analysis of multilayer graphene via atomic moiré interferometry. Phys. Rev. B 81, 125427 (2010).
Fuchs, J-N. & Lederer, P. Spontaneous parity breaking of graphene in the quantum Hall regime. Phys. Rev. Lett. 98, 016803 (2007).
Alicea, J. & Fisher, M. P. A. Graphene integer quantum Hall effect in the ferromagnetic and paramagnetic regimes. Phys. Rev. B 74, 075422 (2006).
Khveshchenko, D. V. Magnetic-field-induced insulating behavior in highly oriented pyrolitic graphite. Phys. Rev. Lett. 87, 206401 (2001).
Partoens, B. & Peeters, F. M. From graphene to graphite: Electronic structure around the K point. Phys. Rev. B 74, 075404 (2006).
Dresselhaus, M. S. & Dresselhaus, G. Intercalation compounds of graphite. Adv. Phys. 51, 1–186 (2002).
Berger, C. et al. Electronic confinement and coherence in patterned epitaxial graphene. Science 312, 1191–1196 (2006).
Berger, C. et al. Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. J. Phys. Chem. B 108, 19912–19916 (2004).
Acknowledgements
We thank C. Berger, M. Sprinkle, N. Sharma, S. Blankenship, A. Band and F. Hess for their technical contributions to this work. Financial support from NSF (DMR-0804908), the Semiconductor Research Corporation Nanoelectronics Research Initiative (NRI-INDEX) and the W. M. Keck Foundation are gratefully acknowledged. Graphene production facilities of the Georgia Tech MRSEC (NSF DMR-0820382) were employed.
Author information
Authors and Affiliations
Contributions
D.L.M., K.D.K., G.M.R., P.N.F. and J.A.S. carried out the measurements in the 4 K UHV STM facility in the CNST at NIST. The graphene sample was grown by M.R. and W.A.dH at Georgia Tech, and the surface prepared/characterized by D.L.M. and P.N.F. A theoretical analysis of the epitaxial graphene multilayer system was carried out by M.K.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary Information
Supplementary Information (PDF 398 kb)
Supplementary Information
Supplementary Information (SWF 4441 kb)
Rights and permissions
About this article
Cite this article
Miller, D., Kubista, K., Rutter, G. et al. Real-space mapping of magnetically quantized graphene states. Nature Phys 6, 811–817 (2010). https://doi.org/10.1038/nphys1736
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nphys1736
This article is cited by
-
Tuning porosity of coal-derived activated carbons for CO2 adsorption
Frontiers of Chemical Science and Engineering (2022)
-
Spin-polarized magneto-electronic properties in buckled monolayer GaAs
Scientific Reports (2019)
-
Electronic cooling via interlayer Coulomb coupling in multilayer epitaxial graphene
Nature Communications (2015)
-
Resonant tunnelling between the chiral Landau states of twisted graphene lattices
Nature Physics (2015)
-
Imaging the dynamics of free-electron Landau states
Nature Communications (2014)