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Selective darkening of degenerate transitions
demonstrated with two superconducting
quantum bits
P. C. de Groot1*, J. Lisenfeld1,2, R. N. Schouten1, S. Ashhab3,4, A. Lupaşcu5, C. J. P. M. Harmans1

and J. E. Mooij1

Controlled manipulation of quantum states is central to
studying natural and artificial quantum systems. If a quantum
system consists of interacting subunits, the nature of the
coupling may lead to quantum levels with degenerate en-
ergy differences. This degeneracy makes frequency-selective
quantum operations impossible. For the prominent group of
transversely coupled two-level systems, that is, qubits, we
introduce a method to selectively suppress one transition of
a degenerate pair while coherently exciting the other, effec-
tively creating artificial selection rules. It requires driving two
qubits simultaneously with the same frequency and specified
relative amplitude and phase. We demonstrate our method
on a pair of superconducting flux qubits1. It can directly be
applied to the other superconducting qubits2–6, and to any
other qubit type that allows for individual driving. Our results
provide a single-pulse controlled-NOT gate for the class of
transversely coupled qubits.

In coupling two qubits one can distinguish interactions that are
oriented either along or perpendicular to the eigenstates of the
qubits. Although in both cases the resulting two-qubit energy-level
spectrum reflects the coupling strength, the response to a change
of the state of a qubit differs greatly. With longitudinal coupling
the state of one qubit affects the energy splitting of the other qubit.
Although this spectroscopic shift enables simple resonant driving
for all operations7,8, in practice it requires refocusing schemes to
compensate for the continuously evolving phases9. In contrast, for
transverse coupling the energy splitting of one qubit does not depend
on the state of the other qubit. This last case is appealing, as in the
absence of driving the system acts as a set of uncoupled qubits, and
the coupling is effectively switched on when a.c. driving is applied10.
The price to pay for the advantage of transverse coupling is obvious;
the degeneracy prohibits schemes for selective excitation that rely
on a frequency splitting. Previous experiments used either extra
coupling elements11, extra modes12 or shifted levels into and out of
resonance by d.c. (ref. 13) or strong a.c. fields14,15. Note that level
shifting can imply passing through conditions of low coherence16,
or passing resonances with other qubits. In contrast, our method
works for simple direct coupling as well as for systems with extra
coupling elements, such as harmonic oscillators, as long as the
effective coupling is transverse. It uses only a single pulse of a single
frequency and does not require (dynamical) shifting of the levels.
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Figure 1 | Coupled qubit system and transitions. a, Optical micrograph of
the sample, showing two flux qubits coloured in blue and red. The inset
shows part of each qubit loop, both containing four Josephson tunnel
junctions. Overlapping the qubit loops, in light grey, are the qubit-state
detectors based on superconducting quantum interference devices. In the
top right and bottom left are the two antennas from which the qubits are
driven. b, Energy-level diagram of the coupled qubit system. Arrows of the
same colour indicate transitions of the same qubit and are degenerate in
frequency. c, Pulse sequence used for the coherent excitation of the qubits.
The first pulse is resonant with qubit 1. The second pulse, applied from both
antennas simultaneously with independent amplitudes and phases, is
resonant with qubit 2. After the second pulse the state of both qubits is
read out. d, The normalized transition strengths of the four transitions in
b as a function of the net driving amplitudes a1/(a1+a2) for ϕ2−ϕ1=0. For
ϕ2−ϕ1=π the dashed and solid lines are interchanged. The black dotted
lines indicate the locations of the darkened transitions.
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Figure 2 |Driving from a single antenna. Measurement of the state of the qubits, represented by switching probabilities Psw,1 and Psw,2, after applying a
pulse of duration τ1 resonant with qubit 1, followed by a pulse of duration τ2 resonant with qubit 2. a, Psw,1, showing coherent oscillations of qubit 1 induced
by pulse 1. The white solid and dashed lines indicate a π- and 2π-rotation respectively. For pulse 2, qubit 1 shows only relaxation. b, Psw,2, showing coherent
oscillations induced by pulse 2. After an odd number of π-rotations on qubit 1, the oscillation frequency is higher than after an even number of π-rotations.
For superposition states of qubit 1, a beating pattern of the two oscillations is observed. c–f, Level occupations Q of the four different levels. Note that a
value of 0.2 has been added to Q11 to improve visibility.

We consider the class of systems of transversely coupled qubits,
described with the Hamiltonian

H =−
1
2
(
∆1σz

1
+∆2σz

2)
+ Jσx 1σx 2 (1)

where ∆i is the single-qubit energy splitting of qubit i, ∆1 6=∆2,
J is the qubit–qubit coupling energy and σx,y,z

i are the Pauli
spin matrices. This Hamiltonian describes many actively used
quantum systems1–6, and often applies for operation at a coherence
sweet-spot3,14,17–19. The energy levels of this system are shown
schematically in Fig. 1b. The arrows indicate the transitions of
interest; the blue and red arrows describe the transitions of qubit
1 and 2, respectively. Both pairs are degenerate in frequency, which
is typical for transverse coupling. For simplicity, we label the states
as if the qubits were uncoupled, although the single-qubit states
are mixed by the coupling. This state mixing is central to the
method we introduce here. As for all schemes with fixed coupling,
the mixing can also lead to a difference between the operational
basis and the readout basis. Solutions to this problem depend on
the details of the readout scheme. For flux qubits, the readout
naturally involves shifting the qubits to a bias position where the
problem does not exist.

Our method aims at the selective excitation of a transition
of one of the degenerate pairs and is based on simultaneously
driving both qubits with the resonance frequency of that pair,

employing different amplitudes and phases. The driving is described
with the Hamiltonian

Hdrive= a1cos(ωt+ϕ1)σx 1+a2cos(ωt+ϕ2)σx 2 (2)

where ω is the driving frequency and ai and ϕi are the
driving amplitude and phase for qubit i. The transition strength
Tk↔l = 〈l|H̃drive|k〉, with the driving Hamiltonian transformed to
an appropriate rotating frame (see Supplementary Information),
governs the transition rate and depends on both ai and ϕi.
Figure 1d shows the normalized |T | = |T |/(a1+ a2) as a function
of a1/(a1 + a2), for a fixed phase difference ϕ2 − ϕ1 = 0. Clearly
the two transitions of each qubit generally do not have the same
strength T , despite their frequency degeneracy. In addition, for
certain settings individual transitions are completely suppressed:
the transition is darkened (black dotted lines in Fig. 1d). The
darkened transitions provide the desired conditions where one of
the two transitions can be excited individually, even though the
driving field is resonant with both transitions. The difference in
transition strength can be understood intuitively. As coupling leads
to mixing of the single-qubit eigenstates, qubit 2 can be excited
by driving qubit 1 with a frequency that is resonant with qubit
2. This indirect driving can enhance, counteract and even cancel
direct driving of qubit 2. The effect differs for the two degenerate
transitions, because the states involved are different superpositions
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Figure 3 | Transition-strength tuning and darkened transitions. a–c, Rabi frequency dependence on φ2−φ1 for three different amplitude ratios. The colour
scale represents the Fourier component of Psw,2(τ2). Qubit 1 is prepared with a π/2-rotation. Markers X0 and X1 indicate the conditions for a darkened
transition on 00↔01 and 10↔ 11, respectively. d–f, Psw,2 versus the durations τ1 and τ2. The white solid and dashed lines indicate a π- and 2π-rotation of
qubit 1, respectively. The driving conditions are as marked by Y left arrow (d), X0 (e) and X1 (f).

of the single-qubit eigenstates (see Supplementary Information).
For J � |∆1−∆2|, and assuming ∆1 >∆2, one readily finds the
driving amplitude ratio

a2
a1
=

J
∆1−∆2

which yields T00↔01 = 0 for ϕ2 − ϕ1 = 0 and T10↔11 = 0 for
ϕ2−ϕ1=π. These are the transitions of qubit 2. For the transitions
of qubit 1, that is 00↔10 and 01↔11, the amplitude ratio is simply
inverted. Expressions for arbitrary J are given in the Supplementary
Information. Note that for a darkened transition in one qubit,
the other is driven more strongly. This non-resonant driving of
the other qubit limits the maximum operation frequency. From
the usual condition that the transition strength of the unwanted
transition should be smaller than its frequency detuning one can
derive the maximum operation frequency 4J/h, which is as fast as
any other two-qubit operation.

To experimentally demonstrate this method we employ two
coupled flux qubits1, each consisting of a superconducting loop
interrupted by four Josephson tunnel junctions. When biased with
a magnetic flux close to half a flux quantum Φ0, the two states of
each qubit are clockwise and anticlockwise persistent-current states.
These currents Ip produce opposite magnetic fields, which provides
the coupling for the two qubits. Two independent a.c.-operated
superconducting quantum interference device magnetometers are
used to simultaneously read out the states of the qubits20,21. These
are switching-type detectors, where the switching probability Psw is
a measure for the magnetic field. At a bias of Φ0/2 the system is
described by the Hamiltonian of equation (1). Here the eigenstates
of each qubit are symmetric and antisymmetric superpositions of
the twopersistent-current states, with level separation∆. The device
is shown in Fig. 1a. The qubits are characterized by the persistent
currents Ip,1 = 355 nA and Ip,2 = 460 nA and the energy splittings

∆1/h= 7.88GHz and∆2/h= 4.89GHz. The qubit–qubit coupling
strength is 2J/h= 410MHz.

For our fabricated quantum objects the spatial locations are well
defined, and the individual control of amplitude and phase for
each qubit according to equation (2) can be easily achieved using
local magnetic fields. We employ two on-chip antennas, indicated
as A1 and A2 in Fig. 1a, both coupling to both qubits, with a
stronger coupling to the closer one. Driving the two qubits from
both antennas is described with

Hdrive = A1cos(ωt+φ1)(m11σx
1
+m12σx

2)

+ A2cos(ωt+φ2)(m21σx
1
+m22σx

2)

where Aj and φj are the driving amplitude and phase for antenna
j and mji is the coupling of antenna j to qubit i. Note that any
combination of ai and ϕi in equation (2) can be achieved with
the proper choice of Aj and φj . For this device m12/m11 = 0.32,
m21/m22= 0.33 andm11=m22.

For the experimental demonstration we choose to focus on the
degenerate transitions of qubit 2.We first show that, if the qubits are
driven from a single antenna, the two degenerate transitions exhibit
a different Rabi frequency. We apply two pulses on antenna 1: the
first pulse is resonant with qubit 1; the second pulse is resonant with
qubit 2. Figure 1c shows a schematic of the pulse sequence; note
that here A2= 0. The experiment is repeated for varying durations
τ1 and τ2 of pulses 1 and 2. The switching probability Psw,1 of
detector 1 is depicted in Fig. 2a, showing a few Rabi oscillation
periods as a function of the pulse duration τ1. Varying τ2 does not
lead to oscillations of qubit 1, as pulse 2 is non-resonant, and only
relaxation is observed. The oscillations of qubit 2, induced by the
second pulse, are visible in Psw,2 (Fig. 2b). Here we distinguish two
oscillation frequencies. Along the white solid line, where qubit 1 is
prepared in the excited state, qubit 2 oscillates with a Rabi frequency

NATURE PHYSICS | VOL 6 | OCTOBER 2010 | www.nature.com/naturephysics 765
© 2010 Macmillan Publishers Limited.  All rights reserved. 

http://www.nature.com/doifinder/10.1038/nphys1733
http://www.nature.com/naturephysics


LETTERS NATURE PHYSICS DOI: 10.1038/NPHYS1733

of 85MHz. For qubit 1 prepared in the ground state, along the white
dashed line, the Rabi frequency f = 31MHz of qubit 2 is lower. For
qubit 1 in a superposition of the ground and excited states, qubit 2
shows a beating pattern of both oscillations.

Amore detailed analysis allows us to unravel the two frequencies
of Fig. 2b and determine which levels are participating in each of
the oscillations. We extract the level occupations Q00,Q01,Q10 and
Q11 from the individual switching probabilities (see Supplementary
Information). The result is shown in Fig. 2c–f. After an odd number
of π-rotations of qubit 1, there are oscillations only between states
10 and 11, not for states 00 and 01. After an even number of
π-rotations of qubit 1 the situation is reversed; now the states 00
and 01 oscillate. The two oscillation frequencies are clearly linked
to the two different transitions.

To demonstrate the tunability of the transition strengths we
drive both antennas simultaneously, using the same frequency and
controlling independently the amplitudes A1,A2 and phases φ1,φ2.
In this two-pulse experiment (Fig. 1c), the first pulse prepares
qubit 1 with a π/2-rotation and the duration τ2 of the second
pulse is varied. As qubit 1 is in a superposition state, both Rabi
frequencies are present in the dynamics of qubit 2. In Fig. 3a–c
we show the Fourier transform for the measured oscillations. Each
graph is measured with a different amplitude ratio A1/A2, with
fixed phase φ1 = 0 and varying φ2. Figure 3a, with A1/A2 = 1.3,
shows a typical result for an arbitrary amplitude ratio; the Rabi
oscillation frequencies of both transitions clearly depend onφ2−φ1,
but nowhere is a transition darkened. Note the occurrence of equal
Rabi frequencies for two phase conditions, as denoted by Y . For
A1/A2= 2.5 in Fig. 3b we observe that for φ2−φ1≈π (indicated by
X0) the transition 10↔ 11 is fully darkened, whereas the 00↔ 01
transition shows a non-zero oscillation frequency. In Fig. 3c with
A1/A2 = 6.3 the situation is reversed, with the 00↔ 01 transition
being suppressed (denoted by X1). This clearly demonstrates our
method, as we selectively excite one of two transitions, despite their
frequency degeneracy. Calculations of T are in good agreement
with the experimental results, provided we allow for different
transmissions of amplitudes and phases of the antennas to the
qubits, whichwe attribute to the influence of the detector circuits.

To further investigate the special cases of equal Rabi frequencies
(Y ), and darkened transitions (X0, X1), we again vary the durations
τ1 and τ2, using both antennas for the second pulse. The results
should be compared with Fig. 2b. Figure 3d shows Psw,2 for driving
conditions denoted by Y (left arrow): the oscillation frequency of
qubit 2 does not depend on the state of qubit 1. For the conditions
marked byX0, we observe oscillations of qubit 2 only when qubit 1 is
in the ground state, as shown in Fig. 3e. Similarly for the conditions
marked by X1, now we observe oscillations of qubit 2 only if qubit
1 is in the excited state (Fig. 3f).

The demonstrated capability to selectively manipulate transition
strengths in frequency-degenerate transitions has important appli-
cations. Aπ-pulse using conditionX1 orX0 provides a 1-controlled-
and 0-controlled-NOT gate, respectively. This enables certain sys-
tems, including the flux qubit used here, to be fully operated at
the coherence-optimal point, without level shifting by either d.c.
or strong a.c. signals. Note that the use of extra coupling elements
is neither required nor prohibited. If extra coupling elements are
used, our method can replace more complicated schemes. For
conditions similar toY , taking care of the individual rotation angles,
also single-qubit gates can be implemented. The controlled-NOT
and single-qubit gates together form a universal set, implying that
our method fulfils all requirements for constructing any single- or
two-qubit gate. Up to small errors, the method also scales to three
or more qubits with transverse coupling. Detailed calculations will
be presented elsewhere.

We have introduced and experimentally demonstrated amethod
to control transition strengths by applying a non-uniform driving

field. Darkened transitions are created and employed for the
selective excitation of degenerate transitions. As this method
improves the simplicity and coherence conditions for operations
in a variety of quantum systems, the prospect of carrying out
large-scale quantum algorithms is enhanced significantly.
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