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Circuit quantum electrodynamics in the
ultrastrong-coupling regime
T. Niemczyk1*, F. Deppe1,2, H. Huebl1, E. P. Menzel1, F. Hocke1, M. J. Schwarz1, J. J. Garcia-Ripoll3,
D. Zueco4, T. Hümmer5, E. Solano6,7, A. Marx1 and R. Gross1,2

In circuit quantum electrodynamics1–10 (QED), where super-
conducting artificial atoms are coupled to on-chip cavities, the
exploration of fundamental quantum physics in the strong-
coupling regime has greatly evolved. In this regime, an
atom and a cavity can exchange a photon frequently before
coherence is lost. Nevertheless, all experiments so far are well
described by the renowned Jaynes–Cummings model11. Here,
we report on the first experimental realization of a circuit QED
system operating in the ultrastrong-coupling limit12,13, where
the atom–cavity coupling rate g reaches a considerable fraction
of the cavity transition frequency ωr. Furthermore, we present
direct evidence for the breakdown of the Jaynes–Cummings
model. We reach remarkable normalized coupling rates g/ωr of
up to 12% by enhancing the inductive coupling14 of a flux qubit
to a transmission line resonator. Our circuit extends the toolbox
of quantum optics on a chip towards exciting explorations of
ultrastrong light–matter interaction.

At microwave frequencies, strong coupling is feasible because
of the enormous design flexibility of superconducting circuit QED
systems1,2. Here, small cavity-mode volumes and large dipole
moments of artificial atoms15 enable coupling rates g of about16,17
1% of the cavity-mode frequency ωr. Nevertheless, as in other
systems18–22, the quantum dynamics of these strongly coupled
systems follows the Jaynes–Cummings model, which describes the
coherent exchange of a single excitation between the atom and
the cavity mode. Although the Hamiltonian of a realistic atom–
cavity system contains so-called counter-rotating terms allowing
the simultaneous creation or annihilation of an excitation in
both, atom and cavity mode, these terms can be safely neglected
for small normalized coupling rates g/ωr. However, when g
becomes a significant fraction of ωr, the counter-rotating terms are
expected to manifest, giving rise to exciting effects in QED. This
ultrastrong-coupling regime is difficult to reach in quantum-optical
cavity QED (refs 19,20), but was recently realized in a solid-state
semiconductor system23,24. There, quantitative deviations from
the Jaynes–Cummings model have been observed, but direct
experimental proof of its breakdown by means of an unambiguous
feature is still missing.

In this work, we exploit the potential of flux-based
superconducting quantumcircuits to reach the ultrastrong-coupling
regime13,14 and show direct evidence of physics beyond the
Jaynes–Cummings model. To this end, we use the large nonlinear
inductance of a Josephson junction shared between a flux qubit
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and a coplanar waveguide resonator. The transmission spectra
of the combined system reveal qubit–mode couplings g/ωr
of up to 12% and anticrossings that cannot be explained by
the Jaynes–Cummings model. Instead, they are caused by the
simultaneous creation (annihilation) of two excitations, one
in the qubit and one in a resonator mode, while annihilating
(creating) only one excitation in a different resonator mode.
The size of the anticrossings illustrates the importance of the
counter-rotating terms for the qubit–cavity dynamics in the
ultrastrong-coupling limit.

Images of our quantum circuit and a schematic of the
measurement set-up are shown in Fig. 1. At a current antinode for
the λ-mode of a niobium superconducting resonator (Fig. 1a–c), a
part of the centre conductor is replaced with a narrow aluminium
strip interrupted by a large-area Josephson junction (see the
Methods section for fabrication details). This junction mediates
most of the inductive coupling between a superconducting flux
qubit25 galvanically connected to the strip. The qubit consists
of three nanometre-scaled Josephson junctions interrupting a
superconducting loop, which is threaded by an external flux bias
Φx . Scanning electron microscope (SEM) images of the qubit loop
and the Josephson junctions are shown in Fig. 1d–f. For suitable
junction sizes, the qubit potential landscape can be reduced to
a double-well potential, where the two minima correspond to
states with clockwise and anticlockwise persistent currents ±Ip. At
δΦx =Φx−Φ0/2= 0, these two states are degenerate and separated
by an energy gap ∆. In the qubit eigenbasis, the qubit Hamiltonian
reads Ĥq = h̄ωqσ̂z/2. Here, ωq =

√
∆2+ (2Ip ·δΦx)2/h̄ is the qubit

transition frequency, which can be adjusted by an external flux
bias. We note, that for our flux qubit the two-level approximation
is well justified because of its large anharmonicity. The resonator
modes are described as harmonic oscillators, Ĥn= h̄ωn(â †

n ân+1/2),
where ωn is the resonance frequency and n is the resonator-mode
index. The operator â †

n (ân) creates (annihilates) a photon in the
nth resonator mode. Owing to the inhomogeneous transmission
line geometry14 (see Fig. 1d), the higher mode frequencies of our
resonator are not integer multiples of the fundamental resonance
frequency ω1. Throughout this work, we refer to the nth mode as
the nλ/2-mode. Then, the Hamiltonian of our quantum circuit
can be written as

Ĥ = Ĥq+
∑
n

[
Ĥn+ h̄gn

(
â †
n + ân

)
(cosθσ̂z− sinθσ̂x)

]
(1)
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Figure 1 |Quantum circuit and experimental set-up. a, Optical image of the superconducting λ/2 coplanar waveguide resonator (light blue rectangle).
Black rectangles: area shown in b. Red rectangle: area shown in d. b, SEM image of one of the coupling capacitors. c, Sketch of the current distribution of
the first three resonator modes. Their resonance frequencies are ω1/2π= 2.782 GHz (λ/2, red), ω2/2π= 5.357 GHz (λ, blue) and ω3/2π= 7.777 GHz
(3λ/2, green). The cavity modes ωn are measured at maximum qubit–cavity detuning (Φx=0). In general, the flux dependence of ωn is very weak, except
for the regions close to Φx=±Φ0/2. d, SEM image of the galvanically coupled flux qubit (see the Methods section for fabrication details). The width in the
overlap regions with the centre conductor is 20 µm, and that of the constriction is 1 µm. Orange rectangle: area shown in e. Green rectangle: area shown
in f. e, SEM image of the large Josephson junction. Its Josephson inductance LJ is responsible for approximately 85% of the qubit–resonator coupling.
f, One Josephson junction of the qubit loop. The area of this junction is 14% of the one shown in e. g, Schematic of the measurement set-up. The
transmission through the cavity at ωrf is measured using a vector network analyser (VNA). A second microwave signal at ωs is used for two-tone qubit
spectroscopy. The input signal is attenuated at various temperature stages and coupled into the resonator (light blue) through the capacitors Cκ . The
crossed squares represent Josephson junctions. A circulator isolates the sample from the amplifier noise.

Here, σ̂x,z denote Pauli operators, gn is the coupling rate of the
qubit to the nth cavity mode and the flux dependence is encoded
in sinθ = ∆/h̄ωq and cosθ . The operator σ̂x is conveniently
expressed as the sum of the qubit raising (σ̂+) and lowering (σ̂−)
operator. Thus, in contrast to the Jaynes–Cummings model, the
Hamiltonian in equation (1) explicitly contains counter-rotating
terms of the form â †

n σ̂+ and ânσ̂−. Figure 1g shows a schematic of
our measurement set-up. The quantum circuit is located at the base
temperature of 15mK in a dilution refrigerator. We measure the
amplified resonator transmission using a vector network analyser.
For qubit spectroscopy measurements, the system is excited with
a second microwave tone ωs with power Ps, while using the
3λ/2-mode atω3/2π=7.777GHz for dispersive readout9,26.

We first present measurements allowing the extraction of the
coupling constants of the qubit to the first three resonator modes.
The spectroscopy data in Fig. 2a show the dressed qubit transition
frequency1,26 with the expected hyperbolic flux dependence and
a minimum at δΦx = 0. Furthermore, the two lowest resonator
modes (ω1 and ω2) are visible. In principle, a fit to the Hamiltonian
in equation (1) would yield all system parameters. However, our
measurement resolution does not allow us to reliably determine
the system parameters, in particular the undressed qubit energy

gap ∆ and the coupling constants gn in this situation. Instead, we
extract them from a cavity transmission spectrum with negligible
photon population. For that purpose, we first measure the power-
dependent a.c.-Zeeman shift of the qubit transition frequency
at δΦx = 0. The data are shown in the inset of Fig. 2a. The
average photon number n̄3 can be estimated using the relation
Prf = n̄3h̄ω3κ3 (refs 6,8), where κ3/2π≈ 3.7MHz is the full-width
at half-maximum of the cavity resonance and Prf is the probe power
referred to the input of the resonator. Figure 2b shows a colour-
coded transmission spectrum for the 3λ/2-mode as a function of
δΦx . The data are recorded at an input power Prf ≈ −140 dBm
(green data point in Fig. 2a, inset) corresponding to n̄3=0.18.

We observe a spectrum with a large number of anticrossings
resulting from the multimode structure of our cavity system.
To extract the individual coupling constants gn, we compute the
lowest nine transition frequencies of the Hamiltonian given in
equation (1) incorporating the first three resonator modes. Fitting
the results to the spectrum of the 3λ/2-mode shows excellent
agreement with the measured data as shown in Fig. 2c. We note
that the spectrum for the λ-mode shown in Fig. 2d can be well
described without additional fitting using the parameters extracted
from the 3λ/2-mode. For the qubit, we obtain 2Ip = 630 nA
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Figure 2 |Qubit microwave spectroscopy and low-power transmission spectra. a, Microwave spectroscopy of the coupled qubit–cavity system. The
measured transmission magnitude (colour coded, blue: low; white: high) is plotted as a function of the relative flux bias δΦx and the spectroscopy
frequency ωs/2π. The black dashed lines indicate the dressed9,26 energy-level spectrum of Hamiltonian (1) obtained with the fit parameters from the
cavity transmission data in Fig. 2c. Owing to the long acquisition time, we need to account for a small flux drift using a slightly smaller value for Ip. The
spectrum is recorded at Prf corresponding to n̄3≈0.5. Near the anticrossing regions with the two lowest cavity modes, the transmitted signal through the
readout mode ω3 disappears in the noise floor. Inset: Centre frequency of the qubit spectroscopy signal at δΦx=0 as a function of the probe power Prf. The
full-width at half-maximum of the qubit signal is approximately 80 MHz in the low-power limit Prf,Ps→0. Red line: fit to the linear region30. The green dot
indicates the power level at which the spectra in b,c and Fig. 3 are recorded. b, Cavity transmission (3λ/2-mode, linear scale, arbitrary units) as a function
of δΦx and probe frequency ωrf/2π. c, The same spectrum as in b. Black lines: numerical fit of the spectrum of the Hamiltonian (1) to the data. d, Cavity
transmission (λ-mode, linear scale, arbitrary units) as a function of δΦx and probe frequency ωrf/2π. The spectrum is recorded at Prf corresponding to
n̄2≈0.9 because of a higher insertion loss of this cavity mode. Black lines: numerically evaluated energy-level spectrum with parameters from c.

and ∆/h = 2.25GHz. The latter deviates significantly from the
dressed qubit transition frequency ω̃q at δΦx = 0 (see Fig. 2a, inset)
because of the strong qubit–cavity interaction. Most importantly,
we find coupling rates of g1/2π= 314MHz, g2/2π= 636MHz and
g3/2π = 568MHz. The values for gn correspond to normalized
coupling rates gn/ωn of remarkable 11.2%, 11.8% and 7.3%,
respectively. These large coupling rates allow us to enter the
ultrastrong-coupling regime and, as we will show below, lead to
significant deviations from the Jaynes–Cummings physics.

In the following, we analyse the features in our data that
constitute unambiguous evidence for the breakdown of the
rotating-wave approximation inherent to the Jaynes–Cummings
model. In Fig. 3, we compare the energy-level spectrum of
the Hamiltonian in equation (1) with that of a three-mode
Jaynes–Cummings model. We note that, depending on δΦx ,
there are regions where our data can be well described by the
Jaynes–Cummings model, and regions where there are significant
deviations (see Fig. 3a). For our analysis we use the notation
|q,N1,N2,N3〉 = |q〉 ⊗ |N1〉 ⊗ |N2〉 ⊗ |N3〉, where q = {g , e}
denote the qubit ground or excited state, respectively, and
|Nn〉 = {|0〉, |1〉, |2〉, ...} represents the Fock state with photon

occupation N in the nth resonator mode. At the outermost
anticrossings (Fig. 3b), where ω3 ≈ ωq, the eigenstates |ψ±〉 of
the coupled system are in good approximation symmetric and
antisymmetric superpositions of |e,0,0,0〉 and |g ,0,0,1〉. This
exchange of a single excitation between the qubit and the resonator
is a characteristic of the Jaynes–Cummings model. On the contrary,
the origin of the anticrossing shown in Fig. 3c is of a different
nature: the dominant contributions to the eigenstates |ψ±〉 are
approximate symmetric and antisymmetric superpositions of the
degenerate states ϕ1= |e,1,0,0〉 and ϕ2= |g ,0,0,1〉. The transition
from ϕ1 to ϕ2 can be understood as the annihilation of two
excitations, one in the λ/2-mode and one in the qubit, while,
simultaneously, creating only one excitation in the 3λ/2-mode.
Such a process can result only from counter-rotating terms as
they are present in the Hamiltonian (1), but not within the
Jaynes–Cummings approximation. Here, only eigenstates with an
equal number of excitations can be coupled. Although counter-
rotating terms in principle exist in any real circuit QED system,
their effects become prominent only in the ultrastrong-coupling
limit with large normalized couplings gn/ωn as realized in
our system. Hence, the observed anticrossing shown in Fig. 3c
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Figure 3 | Breakdown of the Jaynes–Cummings model. a, Cavity transmission (3λ/2-mode, linear scale, arbitrary units) as a function of δΦx and probe
frequency ωrf/2π. Black dashed lines in all plots: energy-level spectrum obtained from the Hamiltonian (1). Coloured lines in all plots: energy-level
spectrum obtained from the Jaynes–Cummings model (dark blue: |g,0,0,1〉, except for anticrossing region shown in b; green: |e,1,0,0〉; light blue:
|e,0,1,0〉 and |e,2,0,0〉, which are indistinguishable within the resolution of this plot. Grey dashed rectangle: areas magnified in b–d. b, Single excitation
anticrossing. The quantitative deviations of the Jaynes–Cummings model from equation (1) are attributed to a small admixture of the state |g,1,1,0〉. The
uncoupled states are indicated by grey dashed lines. c, Avoided crossing resulting from a coupling between the degenerate states |g,0,0,1〉 and |e,1,0,0〉.
This is caused by counter-rotating terms in the Hamiltonian (1). A detailed analysis yields a minor admixture of |g,1,1,0〉 (superposition states:
≈ |g,0,0,1〉/

√
2±(|e,1,0,0〉/

√
3+|g,1,1,0〉/

√
6)). This admixture has no effect on the reasoning presented in the main text. The energy-level spectrum

obtained from the Jaynes–Cummings model is omitted for clarity. The dominant contributions to the superposition states of the innermost anticrossings in
Fig. 2d are |g,0,1,0〉,|g,2,0,0〉 and |e,1,0,0〉. d, The same as in c, but for the Jaynes–Cummings model. Within numerical accuracy, no anticrossing is
predicted, clearly contradicting the data.

is a direct experimental manifestation of physics beyond the
rotating-wave approximation in the Jaynes–Cummings model.
As shown in Fig. 3d, the latter would imply a crossing of
the involved energy levels, which is not observed. A similar
argument applies to the innermost anticrossings of the 3λ/2-
mode (see Fig. 3a), although the involved eigenstates have a more
complicated character, and to the innermost anticrossings of the
λ-mode shown in Fig. 2d.

We have presented measurements on a superconducting circuit
QED system in the ultrastrong-coupling regime. Our transmission
spectra are in excellent agreement with theoretical predictions and
show clear evidence for physics beyond the Jaynes–Cummings
model. This system can act as an on-chip prototype for unveiling the
physics of ultrastrong light–matter interaction. Future explorations
may include squeezing, causality effects in quantum field theory27,
the generation of bound states of qubits and photons28, in situ
switching of distinct physical regimes29 and ultrafast quantum
operations in circuitQED for quantum information protocols.

Methods
Fabrication details. The coplanar waveguide resonator is fabricated using optical
lithography and reactive ion etching. We use a thermally oxidized (50 nm)
silicon substrate with a 100-nm-thick niobium film, deposited by d.c.-magnetron
sputtering before patterning. The coplanar waveguide centre conductor is 20 µm
wide and separated from the lateral ground planes by a gap of 12 µm, resulting
in a characteristic impedance of approximately 50 �. The resonator with a
length of 23mm is defined by two interdigital coupling capacitors (see Fig. 1b)
with a numerically calculated capacitance of about 10 fF. The centre conductor
is interrupted by a gap of 80 µm at a maximum of the current distribution
for the λ-mode (see Fig. 1c). At this point, the amplitude of the standing
current wave for the λ/2- and 3λ/2-mode is smaller by a factor of 1/

√
2. The

aluminium strip connected to the flux qubit and the large Josephson junction is
fabricated by electron-beam lithography and Al/AlOx/Al shadow evaporation
techniques. For the bottom and top aluminium layer, we use a thickness of 50 and
80 nm, respectively. For the in situ oxidation of the bottom layer, pure oxygen
(pO2
= 2×10−4 mbar; 22min) is used. Two of the qubit Josephson junctions have

an area A≈ 250×140 nm2 whereas the other junction is smaller by a factor of
α≈ 0.7. The critical current density of the Josephson junctions is jc≈ 1.3 kA cm−2,
leading to a Josephson energy of EJ ≈ 224GHz for a junction with area A. The area

of the qubit loop is roughly 20×9 µm2 and the large Josephson junction mediating
the ultrastrong qubit–cavity coupling has an area of about 7A.

Theoretical description of the coupling. The qubit–cavity coupling is determined
by the local inductance M = LJ+L. Here, LJ is the Josephson inductance of the
coupling junction and L is the inductance of the shared edge between the centre
conductor and the qubit. Although LJ > L dominatesM , it has negligible influence
on the vacuum current In ≈

√
h̄ωn/Lr in the resonator because the total resonator

inductance Lr� LJ,L. Consequently, the coupling strengths can be written as
h̄gn =MInIp. This result can also be obtained analytically from a more thorough
theoretical treatment14. From the experimental values of gn, we obtain LJ ≈ 60 pH
in agreement with our junction parameters.
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