Abstract
Supernovae are nature’s grandest explosions and an astrophysical laboratory in which unique conditions exist that are not achievable on Earth. They are also the furnaces in which most of the elements heavier than carbon have been forged. Scientists have argued for decades about the physical mechanism responsible for these explosions. It is clear that the ultimate energy source is gravity, but the relative roles of neutrinos, fluid instabilities, rotation and magnetic fields continue to be debated.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Axion emission from supernova with axion-pion-nucleon contact interaction
Journal of High Energy Physics Open Access 17 February 2022
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout





References
Hillebrandt, W. & Niemeyer, J. Type Ia supernova explosion models. Annu. Rev. Astron. Astrophys. 38, 191–230 (2000).
Baade, W. & Zwicky, F. On supernovae. Proc. Natl Acad. Sci. USA 20, 254–259 (1934).
Colgate, S. A. & Johnson, M. H. Hydrodynamic origin of cosmic rays. Phys. Rev. Lett. 5, 235–238 (1960).
Bethe, H. A., Brown, G. E., Applegate, J. & Lattimer, J. M. Equation of state in the gravitational collapse of stars. Nucl. Phys. A 324, 487–533 (1979).
Baron, E., Cooperstein, J. & Kahana, S. Type II supernovae in 12Mcirdot and 15Mcirdot stars: the equation of state and general relativity. Phys. Rev. Lett. 55, 126–129 (1985).
Colgate, S. A. & White, R. H. The hydrodynamic behaviour of supernovae explosions. Astrophys. J. 143, 626–681 (1966).
Bethe, H. A. & Wilson, J. R. Revival of a stalled supernova shock by neutrino heating. Astrophys. J. 295, 14–23 (1985).
Bethe, H. A. Supernova mechanisms. Rev. Mod. Phys. 62, 801–867 (1990).
Foglizzo, T. Non-radial instabilities of isothermal Bondi accretion with a shock: vortical-acoustic cycle vs. post-shock acceleration. Astron. Astrophys. 392, 353–368 (2002).
Blondin, J. M., Mezzacappa, A. & DeMarino, C. Stability of standing accretion shocks, with an eye toward core-collapse supernovae. Astrophys. J. 584, 971–980 (2003).
Chandrasekhar, S. in Hydrodynamic and Hydromagnetic Instability 231–237 (Dover, New York, 1961).
Scheck, L., Plewa, T., Janka, H.-T., Kifonidis, K. & Müller, E. Pulsar recoil by large-scale anisotropies in supernova explosions. Phys. Rev. Lett. 92, 011103 (2004).
Arzoumanian, Z., Chernoff, D. F. & Cordes, J. M. The velocity distribution of isolated radio pulsars. Astrophys. J. 568, 289–301 (2002).
Hwang, U. et al. A million second Chandra view of Cassiopeia A. Astrophys. J. 615, L117–L120 (2004).
Fryer, C. L. & Warren, M. The collapse of rotating massive stars in three dimensions. Astrophys. J. 601, 391–404 (2004).
Burrows, A., Hayes, J. & Fryxell, B. A. On the nature of core-collapse supernova explosions. Astrophys. J. 450, 830–850 (1995).
Buras, R., Rampp, M., Janka, H.-Th. & Kifonidis, K. Two-dimensional hydrodynamic core-collapse supernova simulations with spectral neutrino transport. I. Numerical method and results for a 15 M _sun star Astron. Astrophys. (in the press); preprint at < http://arxiv.org/abs/astro-ph/0507135> (2005).
Mezzacappa, A. et al. An investigation of neutrino-driven convection and the core collapse supernova mechanism using multigroup neutrino transport. Astrophys. J. 495, 911–926 (1998).
Liebendörfer, M., Rampp, M., Janka, H.-T. & Mezzacappa, A. Supernova simulations with Boltzmann neutrino transport: a comparison of methods. Astrophys. J. 620, 840–860 (2005).
Cardall, C. Y., Lentz, E. J. & Mezzacappa, A. Conservative special relativistic radiative transfer for multidimensional astrophysics simulations: motivation and elaboration. Phys. Rev. D 72, 0430071 (2005).
Walder, R. et al. Anisotropies in the neutrino fluxes and heating profiles in two-dimensional, time-dependent, multigroup radiation hydrodynamics simulations of rotating core-collapse supernovae. Astrophys. J. 626, 317–332 (2005).
Fryer, C. Mass limits for black hole formation. Astrophys. J. 522, 413–418 (1999).
Begelman, M. C. Evidence for black holes. Science 300, 1898–1903 (2003).
Mayle, R. & Wilson, J. R. Supernovae from collapse of oxygen–magnesium–neon cores. Astrophys. J. 334, 909–926 (1988).
Janka, H.-T. et al. Neutrino-driven supernovae: an accretion instability in a nuclear physics controlled environment. Nucl. Phys. A 758, 19c–26c (2005).
Arnett, W. D., Bahcall, J. N., Kirshner, R. P. & Woosley, S. E. Supernova 1987A. Annu. Rev. Astron. Astrophys. 27, 629–700 (1989).
Dighe, A. S., Keil, M. T. & Raffelt, G. G. Detecting the neutrino mass hierarchy with a supernova at IceCube. J. Cosmol. Astroparticle Phys. 6, 1–17 (2003).
Müller, E., Rampp, M., Buras, R., Janka, H.-T. & Shoemaker, D. H. Toward gravitational wave signals from realistic core-collapse supernova models. Astrophys. J. 603, 221–230 (2004).
Hoyle, F. The synthesis of the elements from hydrogen. Mon. Not. R. Astron. Soc 106, 343–383 (1946).
Ostriker, J. P. & Gunn, J. E. Do pulsars make supernovae? Astrophs. J. Lett. 164, L95–L104 (1971).
Leblanc, J. M. & Wilson, J. R. A numerical example of the collapse of a magnetized star. Astrophys. J. 161, 541–552 (1970).
Akiyama, S., Wheeler, J. C., Meier, D. L. & Lichtenstadt, I. The magnetorotational instability in core-collapse supernova explosions. Astrophys. J. 584, 954–970 (2003).
Galama, T. J. et al. An unusual supernova in the error box of the γ-ray burst of 25 April 1998. Nature 395, 670–672 (1998).
Hjorth, J. et al. A very energetic supernova associated with the γ-ray burst of 29 March 2003. Nature 423, 847–850 (2003).
Mészáros, P. Theories of gamma ray bursts. Annu. Rev. Astron. Astrophys. 40, 137–169 (2002).
Frail, D. A. et al. Beaming in gamma-ray bursts: evidence for a standard energy reservoir. Astrophys. J. Lett. 562, L55–L58 (2001).
Zeh, A., Klose, S. & Hartmann, D. H. A systematic analysis of supernova light in gamma-ray burst afterglows. Astrophys. J. 609, 952–961 (2004).
Wheeler, J. C., Yi, I., Hoeflich, P. & Wang, L. Asymmetric supernovae, pulsars, magnetars, and gamma-ray bursts. Astrophys. J. 537, 810–823 (2000).
Vietri, M. & Stella, L. A gamma-ray burst model with small baryon contamination. Astrophys. J. Lett. 507, L45–L48 (1998).
MacFadyen, A. I. & Woosley, S. E. Collapsars: gamma-ray bursts and explosions in ‘failed supernovae’. Astrophys. J. 524, 262–289 (1999).
Madau, P., delle Valle, M. & Panagia, N. On the evolution of the cosmic supernova rates. Mon. Not. R. Astron. Soc. 297, L17–L22 (1998).
Ott, C. D., Burrows, A., Thompson, T. A., Livne, E. & Walder, R. The spin periods and rotational profiles of neutron stars at birth. Preprint at < http://arxiv.org/abs/astro-ph/0508462> (2005).
Spruit, H. Dynamo action by differential rotation in a stably stratified stellar interior. Astron. Astrophys. 381, 923–932 (2002).
Heger, A., Woosley, S. E. & Spruit, H. C. Presupernova evolution of differentially rotating massive stars including magnetic fields. Astrophys. J. 626, 350–363 (2005).
Woosley, S. E. & Heger, A. The progenitor stars of gamma-ray bursts.Astrophys. J. (in the press); preprint at < http://arxiv.org/abs/astro-ph/0508175> (2005).
Yoon, S.-C. & Langer, N. Evolution of rapidly rotating metal-poor massive stars towards gamma-ray bursts. Preprint at < http://arxiv.org/abs/astro-ph/0508242> (2005).
Vink, J. S. & de Koter, A. On the metallicity dependence of Wolf–Rayet winds. Astron. Astrophys. 442, 587–596 (2005).
Kratz, K.-L., Bitouzet, J.-P., Thielemann, F.-K., Möller, P. & Pfeiffer, B. Isotopic r-process abundances and nuclear structure far from stability: implications for the r-process mechanism. Astrophys. J. 403, 216–238 (1993).
Lattimer, J. L. & Schramm, D. N. Black-hole-neutron-star collisions. Astrophys. J. Lett. 192, L145–L147 (1974).
Argast, D., Samland, M., Thielemann, F.-K. & Qian, Y.-Z. Neutron star mergers versus core-collapse supernovae as dominant r-process sites in the early Galaxy. Astron. Astrophys. 416, 997–1011 (2004).
Cameron, A. G. W. Some properties of r-process accretion disks and jets. Astrophys. J. 562, 456–469 (2001).
Sneden, C. & Cowan, J. J. Genesis of the heaviest elements in the Milky Way galaxy. Science 299, 70–75 (2003).
Woosley, S. E., Wilson, J. R., Mathews, G. J., Hoffman, R. D. & Meyer, B. S. The r-process and neutrino-heated supernova ejecta. Astrophys. J. 433, 229 (1994).
Thompson, T. A. Magnetic protoneutron star winds and r-process nucleosynthesis. Astrophys. J. Lett. 585, L33–L36 (2003).
Qian, Y. Z. & Woosley, S. E. Nucleosynthesis in neutrino-driven winds: I. The physical conditions. Astrophys. J. 471, 331–351 (1996).
Burrows, A., Livne, E., Dessart, L., Ott, C. & Murphy, J. A new mechanism for core-collapse supernova explosions. Preprint at < http://arxiv.org/abs/astro-ph/0510687> (2005).
Suzuki, T. K. & Nagataki, S. Alfvén wave-driven proto-neutron star winds and r-process nucleosynthesis. Astrophys. J. 628, 914–922 (2005).
Woosley, S. E., Heger, A. & Weaver, T. A. The evolution and explosion of massive stars. Rev. Mod. Phys. 74, 1015–1071 (2002).
Janka, H.-Th., Scheck, L., Kifonidis, K., Müller, E. & Plewa, T. in The Fate of the Most Massive Stars, Proc. Eta Carina Science Symp. (eds Humphreys, R. & Stanek, K.) 363–373 (2005).
Acknowledgements
This work was supported by the SciDAC Program of the US Department of Energy (DC-FC02-01ER41176), the National Science Foundation (AST 02-06111), NASA (NAG5-12036), and the German Research Foundation within the Collaborative Research Center for Astroparticle Physics (SFB 375) and the Transregional Collaborative Research Center for Gravitational Wave Astronomy (SFB-Transregio 7).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Rights and permissions
About this article
Cite this article
Woosley, S., Janka, T. The physics of core-collapse supernovae. Nature Phys 1, 147–154 (2005). https://doi.org/10.1038/nphys172
Issue Date:
DOI: https://doi.org/10.1038/nphys172
This article is cited by
-
Axion emission from supernova with axion-pion-nucleon contact interaction
Journal of High Energy Physics (2022)
-
Core-collapse supernova from a possible progenitor star of 100 $$M_{\odot }$$
Journal of Astrophysics and Astronomy (2022)
-
Analyses of hydrogen-stripped core–collapse supernovae using MOSFiT and MESA-based tools
Journal of Astrophysics and Astronomy (2022)
-
Core-collapse supernova explosion theory
Nature (2021)