Direct entropy determination and application to artificial spin ice

Article metrics

Abstract

From thermodynamic origins, the concept of entropy has expanded to a range of statistical measures of uncertainty, which may still be thermodynamically significant1,2. However, laboratory measurements of entropy continue to rely on direct measurements of heat. New technologies that can map out myriads of microscopic degrees of freedom suggest direct determination of configurational entropy by counting in systems where it is thermodynamically inaccessible, such as granular3,4,5,6,7,8 and colloidal9,10,11,12,13 materials, proteins14 and lithographically fabricated nanometre-scale arrays. Here, we demonstrate a conditional-probability technique to calculate entropy densities of translation-invariant states on lattices using limited configuration data on small clusters, and apply it to arrays of interacting nanometre-scale magnetic islands (artificial spin ice)15. Models for statistically disordered systems can be assessed by applying the method to relative entropy densities. For artificial spin ice, this analysis shows that nearest-neighbour correlations drive longer-range ones.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Artificial spin-ice arrays.
Figure 2: Entropy density upper bounds for honeycomb artificial spin ice at four lattice constants as a function of the demagnetization step size ΔHext.
Figure 3: Entropy density upper bounds for square-lattice artificial spin ice.

References

  1. 1

    Landauer, R. Irreversibility and heat generation in the computing process. IBM J. Res. Dev. 5, 183–191 (1961).

  2. 2

    Leff, H. S. & Rex, A. F. (eds) Maxwell’s Demon 2: Entropy, Classical and Quantum Information, Computing 2nd edn (Institute of Physics, 2003).

  3. 3

    Liu, A. J. & Nagel, S. R. Jamming is not just cool any more. Nature 396, 21–22 (1998).

  4. 4

    Coniglio, A. & Nicodemi, M. The jamming transition of granular media. J. Phys. Condens. Matter 12, 6601–6610 (2000).

  5. 5

    O’Hern, C. S., Sibert, L. E., Liu, A. J. & Nagel, S. R. Jamming at zero temperature and zero applied stress: The epitome of disorder. Phys. Rev. E 68, 011306 (2003).

  6. 6

    Corwin, E. I., Jaeger, H. M. & Nagel, S. R. Structural signatures of jamming in granular media. Nature 435, 1075–1078 (2005).

  7. 7

    Majumdar, T. S., Sperl, M., Luding, S. & Behringer, R. P. Jamming transition in granular systems. Phys. Rev. Lett. 98, 058001 (2007).

  8. 8

    Behringer, R. P., Daniels, K. E., Majumdar, T. S. & Sperl, M. Fluctuations, correlations and transitions in granular materials: Statistical mechanics for a non-conventional system. Phil. Trans. R. Soc. A 366, 493–504 (2008).

  9. 9

    Kegel, W. K. & van Blaaderen, A. Direct observation of dynamical heterogeneities in colloidal hard-sphere suspensions. Science 287, 290–293 (2000).

  10. 10

    Weeks, E. R., Crocker, J. C., Levitt, A. C., Schofield, A. & Weitz, D. A. Three-dimensional direct imaging of structural relaxation near the colloidal glass transition. Science 287, 627–631 (2000).

  11. 11

    Cui, B., Lin, B. & Rice, S. A. Dynamical heterogeneity in a dense quasi-two-dimensional colloidal liquid. J. Chem. Phys. 114, 9142–9155 (2001).

  12. 12

    Gasser, U., Weeks, E. R., Schofield, A., Pusey, P. N. & Weitz, D. A. Real-space imaging of nucleation and growth in colloidal crystallization. Science 292, 258–262 (2001).

  13. 13

    Alsayed, A. M., Islam, M. F., Zhang, J., Collings, P. J. & Yodh, A. G. Premelting at defects within bulk colloidal crystals. Science 309, 1207–1210 (2005).

  14. 14

    Pande, V. S., Grosberg, A. Y. & Tanaka, T. Heteropolymer freezing and design: Towards physical models of protein folding. Rev. Mod. Phys. 72, 259–314 (2000).

  15. 15

    Wang, R. et al. Artificial ‘spin ice’ in a geometrically frustrated lattice of nanoscale ferromagnetic islands. Nature 439, 303–306 (2006).

  16. 16

    Ke, X. et al. Energy minimization and ac demagnetization in a nanomagnet array. Phys. Rev. Lett. 101, 037205 (2008).

  17. 17

    Nisoli, C. et al. Ground state lost but degeneracy found: The effective thermodynamics of artificial spin ice. Phys. Rev. Lett. 98, 217203 (2007).

  18. 18

    Ritort, F. & Sollich, P. Glassy dynamics of kinetically constrained models. Adv. Phys. 52, 219–342 (2003).

  19. 19

    Janke, W. (ed.) Rugged Free Energy Landscapes (Lecture Notes in Physics, Vol. 736, Springer, 2008).

  20. 20

    Möller, G. & Moessner, R. Magnetic multipole analysis of kagome and artificial spin-ice dipolar arrays. Phys. Rev. B 80, 140409(R) (2009).

  21. 21

    Tanaka, M., Saitoh, E. & Miyajima, H. Magnetic interactions in a ferromagnetic honeycomb nanoscale network. Phys. Rev. B 73, 052411 (2006).

  22. 22

    Qi, Y., Brintlinger, T. E. & Cumings, J. Direct observation of the ice rule in an artificial kagomé spin ice. Phys. Rev. B 77, 094418 (2008).

  23. 23

    Wehrl, A. General properties of entropy. Rev. Mod. Phys. 50, 221–260 (1978).

  24. 24

    Penrose, O. Foundations of Statistical Mechanics (Pergamon, 1970).

  25. 25

    Jaynes, E. T. Information theory and statistical mechanics. Phys. Rev. 106, 620–630 (1957).

  26. 26

    Schlijper, A. G. & Smit, B. Two-sided bounds on the free energy from local states in Monte Carlo simulations. J. Stat. Phys. 56, 247–259 (1989).

  27. 27

    Schlijper, A. G. & van Bergen, A. R. D. Local-states method for the calculation of free energies in Monte Carlo simulations of lattice models. Phys. Rev. A 41, 1175–1178 (1990).

  28. 28

    Cover, T. M. & Thomas, J. A. Elements of Information Theory (Wiley, 1991).

  29. 29

    Dembo, A. & Zeitouni, O. Large Deviations Techniques and Applications 2nd edn (Springer, 1998).

Download references

Acknowledgements

We acknowledge the financial support from the Army Research Office and the National Science Foundation MRSEC program (DMR-0820404) and the National Nanotechnology Infrastructure Network. We thank C. Leighton and M. Erickson for permalloy growth.

Author information

P.S. and V.H.C. conceived the initial idea of this project and kept it on track. X.K., J.L. and D.M.G. carried out the experiments and collected data. C.N. made theoretical contributions. P.E.L. analysed data and developed theory.

Correspondence to Paul E. Lammert.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 254 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lammert, P., Ke, X., Li, J. et al. Direct entropy determination and application to artificial spin ice. Nature Phys 6, 786–789 (2010) doi:10.1038/nphys1728

Download citation

Further reading