Scaling of tropical-cyclone dissipation

Article metrics


The influence of climate variability and global warming on the occurrence of tropical cyclones is a controversial issue1,2,3,4,5,6,7,8,9,10. Existing historical databases on the subject are not fully reliable9,11,12,13, but a more fundamental hindrance is the lack of basic understanding regarding the intrinsic nature of tropical-cyclone genesis and evolution14. It is known that tropical cyclones involve more than a passive response to changing external forcing15, but it is not clear which dynamic behaviour best describes them. Here we present an approach based on the application of the power dissipation index, which constitutes an estimation of released energy3, to individual tropical cyclones. A robust law emerges for the statistics of power dissipation index, valid in four different ocean basins and over long time periods. In addition to suggesting a description of the physics of tropical cyclones in terms of critical phenomena16,17, the scaling law enables us to quantify their response to changing climatic conditions, with an increase in the largest power dissipation index values with sea surface temperature or the presence of El Niño phenomena, depending on the basin under consideration. In this way, we demonstrate that the recent upswing in North Atlantic hurricane activity does not involve tropical cyclones that are quantitatively different from those in other sustained high-activity periods before 1970.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Power-law distributions of TC PDI values.
Figure 2: Scaling of PDI distributions conditioned to SST and El Niño.
Figure 3: Equivalence between periods of predominantly high activity and high SST in the North Atlantic.


  1. 1

    Goldenberg, S. B., Landsea, C. W., Mestas-Nuñez, A. M. & Gray, W. M. The recent increase in Atlantic hurricane activity: Causes and implications. Science 293, 474–479 (2001).

  2. 2

    Trenberth, K. Uncertainty in hurricanes and global warming. Science 308, 1753–1754 (2005).

  3. 3

    Emanuel, K. Increasing destructiveness of tropical cyclones over the past 30 years. Nature 436, 686–688 (2005).

  4. 4

    Landsea, C. W. Hurricanes and global warming. Nature 438, E11–E12 (2005).

  5. 5

    Webster, P. J., Holland, G. J., Curry, J. A. & Chang, H-R. Changes in tropical cyclone number, duration, and intensity in a warming environment. Science 309, 1844–1846 (2005).

  6. 6

    Chan, J. C. L. Comment on ‘Changes in tropical cyclone number, duration, and intensity in a warming environment’. Science 311, 1713 (2006).

  7. 7

    Klotzbach, P. J. Trends in global tropical cyclone activity over the past twenty years (1986–2005). Geophys. Res. Lett. 33, L10805 (2006).

  8. 8

    Shepherd, J. M. & Knutson, T. The current debate on the linkage between global warming and hurricanes. Geogr. Compass 1, 1–24 (2007).

  9. 9

    Kossin, J. P., Knapp, K. R., Vimont, D. J., Murnane, R. J. & Harper, B. A. A globally consistent reanalysis of hurricane variability and trends. Geophys. Res. Lett. 34, L04815 (2007).

  10. 10

    Elsner, J. B., Kossin, J. P. & Jagger, T. H. The increasing intensity of the strongest tropical cyclones. Nature 455, 92–95 (2008).

  11. 11

    Gray, W. M. Comments on ‘Increasing destructiveness of tropical cyclones over the past 30 years’. Preprint at (2006).

  12. 12

    Landsea, C. W., Harper, B. A., Hoarau, K. & Knaff, J. A. Can we detect trends in extreme tropical cyclones? Science 313, 452–454 (2006).

  13. 13

    Landsea, C. W. Counting Atlantic tropical cyclones back to 1900. Eos 88, 197–202 (2007).

  14. 14

    Emanuel, K. Divine Wind: The History and Science of Hurricanes (Oxford Univ. Press, 2005).

  15. 15

    Emanuel, K. The hurricane–climate connection. Bull. Am. Meteorol. Soc. 5, ES10–ES20 (2008).

  16. 16

    Bak, P. How Nature Works: The Science of Self-Organized Criticality (Copernicus, 1996).

  17. 17

    Christensen, K. & Moloney, N. R. Complexity and Criticality (Imperial College Press, 2005).

  18. 18

    Malamud, B. D. Tails of natural hazards. Phys. World 17, 31–35 (2004).

  19. 19

    Kantha, L. Time to replace the Saffir–Simpson hurricane scale? Eos 87, 3–6 (2006).

  20. 20

    Jarvinen, B. R., Neumann, C. J. & David, M. A. S. A tropical cyclone data tape for the North Atlantic basin, 1886–1983: Contents, limitations, and uses. (1988).

  21. 21

    Chu, J-H., Sampson, C. R., Levine, A. S. & Fukada, E. The joint typhoon warning center tropical cyclone best-tracks, 1945–2000. (2002).

  22. 22

    Landsea, C. W. A climatology of intense (or major) hurricanes. Mon. Weath. Rev. 121, 1703–1713 (1993).

  23. 23

    Arakawa, A. & Schubert, W. H. Interaction of a cumulus cloud ensemble with the large-scale environment, part I. J. Atmos. Sci. 31, 674–701 (1974).

  24. 24

    Peters, O. & Neelin, J. D. Critical phenomena in atmospheric precipitation. Nature Phys. 2, 393–396 (2006).

  25. 25

    Peters, O., Neelin, J. D. & Nesbitt, S. W. Mesoscale convective systems and critical clusters. J. Atmos. Sci. 2913–2924 (2009).

  26. 26

    Peters, O., Hertlein, C. & Christensen, K. A complexity view of rainfall. Phys. Rev. Lett. 88, 018701 (2002).

  27. 27

    Emanuel, K. A statistical analysis of tropical cyclone intensity. Mon. Weath. Rev. 128, 1139–1152 (2000).

  28. 28

    Willoughby, H. E. Forecasting hurricane intensity and impacts. Science 315, 1232–1233 (2007).

  29. 29

    National Hurricane Center Forecast Verification. (2008).

  30. 30

    Main, I. G., Li, L., McCloskey, J. & Naylor, M. Effect of the Sumatran mega-earthquake on the global magnitude cut-off and event rate. Nature Geosci. 1, 142 (2008).

  31. 31

    Rayner, N. A. et al. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. 108, 4407 (2003).

  32. 32

    Wolter, K. & Timlin, M. S. Measuring the strength of ENSO events: How does 1997/98 rank? Weather 53, 315–324 (1998).

  33. 33

    Lander, M. A. An exploratory analysis of the relationship between tropical storm formation in the Western North Pacific and ENSO. Mon. Weath. Rev. 122, 636–651 (1994).

  34. 34

    Emanuel, K. Environmental factors affecting tropical cyclone power dissipation. J. Clim. 20, 5497–5509 (2007).

Download references


We have benefited from the expertise and kindness of A. Clauset, A. Deluca,K. Emanuel, E. Fukada, A. González, J. Kossin, R. D. Malmgren, B. Mathiesen, M. Paczuski, O. Peters, G. B. Raga, R. Romero and A. Turiel. A.O. and A.C. were put in contact through G. Orriols. The initial part of our research was financed by the Explora-Ingenio 2010 program, grant FIS2007-29088-E, and also partially by FIS2009-09508, CGL2007-60797/CLI and 2009SGR-164. A.C. is also a participant of the Consolider i-Math project.

Author information

A.O. downloaded the data, A.C. wrote most of the codes, A.O. and A.C. analysed the data, A.C. wrote the paper, J.E.L. provided feedback and support and participated in discussions.

Correspondence to Álvaro Corral.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1812 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Corral, Á., Ossó, A. & Llebot, J. Scaling of tropical-cyclone dissipation. Nature Phys 6, 693–696 (2010) doi:10.1038/nphys1725

Download citation

Further reading