Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The physics of core-collapse supernovae

Abstract

Supernovae are nature’s grandest explosions and an astrophysical laboratory in which unique conditions exist that are not achievable on Earth. They are also the furnaces in which most of the elements heavier than carbon have been forged. Scientists have argued for decades about the physical mechanism responsible for these explosions. It is clear that the ultimate energy source is gravity, but the relative roles of neutrinos, fluid instabilities, rotation and magnetic fields continue to be debated.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The evolution of the temperature and density for the centre of two massive stars, 15 and 25 times heavier than the Sun.
Figure 2: Looking into the heart of a supernova.
Figure 3: Accretion onto the nascent neutron star shows a dipolar character.
Figure 4: The collapse of the core of a rapidly rotating 14-solar-mass helium core yields a black hole and a centrifugally supported accretion disk.
Figure 5: Neutrinos (νe,νμ,ντ and their antiparticles) drive a wind from the surface of the cooling PNS creating the r-process isotopes.

Similar content being viewed by others

References

  1. Hillebrandt, W. & Niemeyer, J. Type Ia supernova explosion models. Annu. Rev. Astron. Astrophys. 38, 191–230 (2000).

    Article  ADS  Google Scholar 

  2. Baade, W. & Zwicky, F. On supernovae. Proc. Natl Acad. Sci. USA 20, 254–259 (1934).

    Article  ADS  Google Scholar 

  3. Colgate, S. A. & Johnson, M. H. Hydrodynamic origin of cosmic rays. Phys. Rev. Lett. 5, 235–238 (1960).

    Article  ADS  Google Scholar 

  4. Bethe, H. A., Brown, G. E., Applegate, J. & Lattimer, J. M. Equation of state in the gravitational collapse of stars. Nucl. Phys. A 324, 487–533 (1979).

    Article  ADS  Google Scholar 

  5. Baron, E., Cooperstein, J. & Kahana, S. Type II supernovae in 12Mcirdot and 15Mcirdot stars: the equation of state and general relativity. Phys. Rev. Lett. 55, 126–129 (1985).

    Article  ADS  Google Scholar 

  6. Colgate, S. A. & White, R. H. The hydrodynamic behaviour of supernovae explosions. Astrophys. J. 143, 626–681 (1966).

    Article  ADS  Google Scholar 

  7. Bethe, H. A. & Wilson, J. R. Revival of a stalled supernova shock by neutrino heating. Astrophys. J. 295, 14–23 (1985).

    Article  ADS  Google Scholar 

  8. Bethe, H. A. Supernova mechanisms. Rev. Mod. Phys. 62, 801–867 (1990).

    Article  ADS  Google Scholar 

  9. Foglizzo, T. Non-radial instabilities of isothermal Bondi accretion with a shock: vortical-acoustic cycle vs. post-shock acceleration. Astron. Astrophys. 392, 353–368 (2002).

    Article  ADS  Google Scholar 

  10. Blondin, J. M., Mezzacappa, A. & DeMarino, C. Stability of standing accretion shocks, with an eye toward core-collapse supernovae. Astrophys. J. 584, 971–980 (2003).

    Article  ADS  Google Scholar 

  11. Chandrasekhar, S. in Hydrodynamic and Hydromagnetic Instability 231–237 (Dover, New York, 1961).

    Google Scholar 

  12. Scheck, L., Plewa, T., Janka, H.-T., Kifonidis, K. & Müller, E. Pulsar recoil by large-scale anisotropies in supernova explosions. Phys. Rev. Lett. 92, 011103 (2004).

    Article  ADS  Google Scholar 

  13. Arzoumanian, Z., Chernoff, D. F. & Cordes, J. M. The velocity distribution of isolated radio pulsars. Astrophys. J. 568, 289–301 (2002).

    Article  ADS  Google Scholar 

  14. Hwang, U. et al. A million second Chandra view of Cassiopeia A. Astrophys. J. 615, L117–L120 (2004).

    Article  ADS  Google Scholar 

  15. Fryer, C. L. & Warren, M. The collapse of rotating massive stars in three dimensions. Astrophys. J. 601, 391–404 (2004).

    Article  ADS  Google Scholar 

  16. Burrows, A., Hayes, J. & Fryxell, B. A. On the nature of core-collapse supernova explosions. Astrophys. J. 450, 830–850 (1995).

    Article  ADS  Google Scholar 

  17. Buras, R., Rampp, M., Janka, H.-Th. & Kifonidis, K. Two-dimensional hydrodynamic core-collapse supernova simulations with spectral neutrino transport. I. Numerical method and results for a 15 M _sun star Astron. Astrophys. (in the press); preprint at < http://arxiv.org/abs/astro-ph/0507135> (2005).

  18. Mezzacappa, A. et al. An investigation of neutrino-driven convection and the core collapse supernova mechanism using multigroup neutrino transport. Astrophys. J. 495, 911–926 (1998).

    Article  ADS  Google Scholar 

  19. Liebendörfer, M., Rampp, M., Janka, H.-T. & Mezzacappa, A. Supernova simulations with Boltzmann neutrino transport: a comparison of methods. Astrophys. J. 620, 840–860 (2005).

    Article  ADS  Google Scholar 

  20. Cardall, C. Y., Lentz, E. J. & Mezzacappa, A. Conservative special relativistic radiative transfer for multidimensional astrophysics simulations: motivation and elaboration. Phys. Rev. D 72, 0430071 (2005).

    Article  Google Scholar 

  21. Walder, R. et al. Anisotropies in the neutrino fluxes and heating profiles in two-dimensional, time-dependent, multigroup radiation hydrodynamics simulations of rotating core-collapse supernovae. Astrophys. J. 626, 317–332 (2005).

    Article  ADS  Google Scholar 

  22. Fryer, C. Mass limits for black hole formation. Astrophys. J. 522, 413–418 (1999).

    Article  ADS  Google Scholar 

  23. Begelman, M. C. Evidence for black holes. Science 300, 1898–1903 (2003).

    Article  ADS  Google Scholar 

  24. Mayle, R. & Wilson, J. R. Supernovae from collapse of oxygen–magnesium–neon cores. Astrophys. J. 334, 909–926 (1988).

    Article  ADS  Google Scholar 

  25. Janka, H.-T. et al. Neutrino-driven supernovae: an accretion instability in a nuclear physics controlled environment. Nucl. Phys. A 758, 19c–26c (2005).

    Article  ADS  Google Scholar 

  26. Arnett, W. D., Bahcall, J. N., Kirshner, R. P. & Woosley, S. E. Supernova 1987A. Annu. Rev. Astron. Astrophys. 27, 629–700 (1989).

    Article  ADS  Google Scholar 

  27. Dighe, A. S., Keil, M. T. & Raffelt, G. G. Detecting the neutrino mass hierarchy with a supernova at IceCube. J. Cosmol. Astroparticle Phys. 6, 1–17 (2003).

    Google Scholar 

  28. Müller, E., Rampp, M., Buras, R., Janka, H.-T. & Shoemaker, D. H. Toward gravitational wave signals from realistic core-collapse supernova models. Astrophys. J. 603, 221–230 (2004).

    Article  ADS  Google Scholar 

  29. Hoyle, F. The synthesis of the elements from hydrogen. Mon. Not. R. Astron. Soc 106, 343–383 (1946).

    Article  ADS  Google Scholar 

  30. Ostriker, J. P. & Gunn, J. E. Do pulsars make supernovae? Astrophs. J. Lett. 164, L95–L104 (1971).

    Article  ADS  Google Scholar 

  31. Leblanc, J. M. & Wilson, J. R. A numerical example of the collapse of a magnetized star. Astrophys. J. 161, 541–552 (1970).

    Article  ADS  Google Scholar 

  32. Akiyama, S., Wheeler, J. C., Meier, D. L. & Lichtenstadt, I. The magnetorotational instability in core-collapse supernova explosions. Astrophys. J. 584, 954–970 (2003).

    Article  ADS  Google Scholar 

  33. Galama, T. J. et al. An unusual supernova in the error box of the γ-ray burst of 25 April 1998. Nature 395, 670–672 (1998).

    Article  ADS  Google Scholar 

  34. Hjorth, J. et al. A very energetic supernova associated with the γ-ray burst of 29 March 2003. Nature 423, 847–850 (2003).

    Article  ADS  Google Scholar 

  35. Mészáros, P. Theories of gamma ray bursts. Annu. Rev. Astron. Astrophys. 40, 137–169 (2002).

    Article  ADS  Google Scholar 

  36. Frail, D. A. et al. Beaming in gamma-ray bursts: evidence for a standard energy reservoir. Astrophys. J. Lett. 562, L55–L58 (2001).

    Article  ADS  Google Scholar 

  37. Zeh, A., Klose, S. & Hartmann, D. H. A systematic analysis of supernova light in gamma-ray burst afterglows. Astrophys. J. 609, 952–961 (2004).

    Article  ADS  Google Scholar 

  38. Wheeler, J. C., Yi, I., Hoeflich, P. & Wang, L. Asymmetric supernovae, pulsars, magnetars, and gamma-ray bursts. Astrophys. J. 537, 810–823 (2000).

    Article  ADS  Google Scholar 

  39. Vietri, M. & Stella, L. A gamma-ray burst model with small baryon contamination. Astrophys. J. Lett. 507, L45–L48 (1998).

    Article  ADS  Google Scholar 

  40. MacFadyen, A. I. & Woosley, S. E. Collapsars: gamma-ray bursts and explosions in ‘failed supernovae’. Astrophys. J. 524, 262–289 (1999).

    Article  ADS  Google Scholar 

  41. Madau, P., delle Valle, M. & Panagia, N. On the evolution of the cosmic supernova rates. Mon. Not. R. Astron. Soc. 297, L17–L22 (1998).

    Article  ADS  Google Scholar 

  42. Ott, C. D., Burrows, A., Thompson, T. A., Livne, E. & Walder, R. The spin periods and rotational profiles of neutron stars at birth. Preprint at < http://arxiv.org/abs/astro-ph/0508462> (2005).

  43. Spruit, H. Dynamo action by differential rotation in a stably stratified stellar interior. Astron. Astrophys. 381, 923–932 (2002).

    Article  ADS  Google Scholar 

  44. Heger, A., Woosley, S. E. & Spruit, H. C. Presupernova evolution of differentially rotating massive stars including magnetic fields. Astrophys. J. 626, 350–363 (2005).

    Article  ADS  Google Scholar 

  45. Woosley, S. E. & Heger, A. The progenitor stars of gamma-ray bursts.Astrophys. J. (in the press); preprint at < http://arxiv.org/abs/astro-ph/0508175> (2005).

  46. Yoon, S.-C. & Langer, N. Evolution of rapidly rotating metal-poor massive stars towards gamma-ray bursts. Preprint at < http://arxiv.org/abs/astro-ph/0508242> (2005).

  47. Vink, J. S. & de Koter, A. On the metallicity dependence of Wolf–Rayet winds. Astron. Astrophys. 442, 587–596 (2005).

    Article  ADS  Google Scholar 

  48. Kratz, K.-L., Bitouzet, J.-P., Thielemann, F.-K., Möller, P. & Pfeiffer, B. Isotopic r-process abundances and nuclear structure far from stability: implications for the r-process mechanism. Astrophys. J. 403, 216–238 (1993).

    Article  ADS  Google Scholar 

  49. Lattimer, J. L. & Schramm, D. N. Black-hole-neutron-star collisions. Astrophys. J. Lett. 192, L145–L147 (1974).

    Article  ADS  Google Scholar 

  50. Argast, D., Samland, M., Thielemann, F.-K. & Qian, Y.-Z. Neutron star mergers versus core-collapse supernovae as dominant r-process sites in the early Galaxy. Astron. Astrophys. 416, 997–1011 (2004).

    Article  ADS  Google Scholar 

  51. Cameron, A. G. W. Some properties of r-process accretion disks and jets. Astrophys. J. 562, 456–469 (2001).

    Article  ADS  Google Scholar 

  52. Sneden, C. & Cowan, J. J. Genesis of the heaviest elements in the Milky Way galaxy. Science 299, 70–75 (2003).

    Article  ADS  Google Scholar 

  53. Woosley, S. E., Wilson, J. R., Mathews, G. J., Hoffman, R. D. & Meyer, B. S. The r-process and neutrino-heated supernova ejecta. Astrophys. J. 433, 229 (1994).

    Article  ADS  Google Scholar 

  54. Thompson, T. A. Magnetic protoneutron star winds and r-process nucleosynthesis. Astrophys. J. Lett. 585, L33–L36 (2003).

    Article  ADS  Google Scholar 

  55. Qian, Y. Z. & Woosley, S. E. Nucleosynthesis in neutrino-driven winds: I. The physical conditions. Astrophys. J. 471, 331–351 (1996).

    Article  ADS  Google Scholar 

  56. Burrows, A., Livne, E., Dessart, L., Ott, C. & Murphy, J. A new mechanism for core-collapse supernova explosions. Preprint at < http://arxiv.org/abs/astro-ph/0510687> (2005).

  57. Suzuki, T. K. & Nagataki, S. Alfvén wave-driven proto-neutron star winds and r-process nucleosynthesis. Astrophys. J. 628, 914–922 (2005).

    Article  ADS  Google Scholar 

  58. Woosley, S. E., Heger, A. & Weaver, T. A. The evolution and explosion of massive stars. Rev. Mod. Phys. 74, 1015–1071 (2002).

    Article  ADS  Google Scholar 

  59. Janka, H.-Th., Scheck, L., Kifonidis, K., Müller, E. & Plewa, T. in The Fate of the Most Massive Stars, Proc. Eta Carina Science Symp. (eds Humphreys, R. & Stanek, K.) 363–373 (2005).

    Google Scholar 

Download references

Acknowledgements

This work was supported by the SciDAC Program of the US Department of Energy (DC-FC02-01ER41176), the National Science Foundation (AST 02-06111), NASA (NAG5-12036), and the German Research Foundation within the Collaborative Research Center for Astroparticle Physics (SFB 375) and the Transregional Collaborative Research Center for Gravitational Wave Astronomy (SFB-Transregio 7).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stan Woosley.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Woosley, S., Janka, T. The physics of core-collapse supernovae. Nature Phys 1, 147–154 (2005). https://doi.org/10.1038/nphys172

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys172

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing