Observation of pseudogap behaviour in a strongly interacting Fermi gas

Article metrics


Ultracold atomic Fermi gases present an opportunity to study strongly interacting fermionic systems in a controlled and uncomplicated setting. The ability to tune attractive interactions has led to the discovery of superfluidity in these systems with an extremely high transition temperature with respect to the Fermi temperature1,2 near T/TF=0.2. This superfluidity is the electrically neutral analogue of superconductivity; however, superfluidity in atomic Fermi gases occurs in the limit of strong interactions and defies a conventional Bardeen–Cooper–Schrieffer (BCS) description. For these strong interactions, it is predicted that the onset of pairing and superfluidity can occur at different temperatures3,4,5. Thus, for a range of temperatures, a pseudogap region may exist, in which the system retains some of the characteristics of the superfluid phase—such as a BCS-like dispersion and a partially gapped density of states—but does not exhibit superfluidity. By making two independent measurements—the direct observation of pair condensation in momentum space and a measurement of the single-particle spectral function using an analogue to photoemission spectroscopy6—we directly probe the pseudogap phase. Our measurements reveal a BCS-like dispersion with back-bending near the Fermi wavevector kF, which persists well above the transition temperature for pair condensation.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Photoemission spectra throughout the pseudogap regime.
Figure 2: EDCs.
Figure 3: Single-particle dispersion curves.
Figure 4: Condensate fraction as a function of temperature.


  1. 1

    Regal, C. A. & Jin, D. S. Experimental realization of the BCS–BEC crossover with a Fermi gas of atoms. Adv. Atom. Mol. Opt. Phys. 54, 1–79 (2006).

  2. 2

    Ketterle, W. & Zwierlein, M. W. in Proc. of the International School of Physics ‘Enrico Fermi’, Course CLXIV (eds Inguscio, M., Ketterle, W. & Salomon, C.) 95–287 (IOS Press, 2008).

  3. 3

    Janko, B., Maly, J. & Levin, K. Pseudogap effects induced by resonant pair scattering. Phys. Rev. B 56, R11407–R11410 (1997).

  4. 4

    Randeria, M. in Proc. of the International School of Physics ‘Enrico Fermi’, Course CXXXVI (eds Iadonisi, G., Schrieffer, J. R. & Chiafalo, M. L.) 115–139 (IOS Press, 1998).

  5. 5

    Perali, A., Pieri, P., Strinati, G. C. & Castellani, C. Pseudogap and spectral function from superconducting fluctuations to the bosonic limit. Phys. Rev. B 66, 024510 (2002).

  6. 6

    Stewart, J. T., Gaebler, J. P. & Jin, D. S. Using photoemission spectroscopy to probe a strongly interacting Fermi gas. Nature 454, 744–747 (2008).

  7. 7

    Damascelli, A. Probing the electronic structure of complex systems by ARPES. Phys. Scr. T109, 61–74 (2004).

  8. 8

    Kanigel, A. et al. Evidence for pairing above Tc from the dispersion in the pseudogap phase of cuprates. Phys. Rev. Lett. 101, 137002 (2008).

  9. 9

    Randeria, M., Trivedi, N., Moreo, A. & Scalettar, R. T. Pairing and spin gap in the normal state of short coherence length superconductors. Phys. Rev. Lett. 69, 2001–2004 (1992).

  10. 10

    Sá de Melo, C. A. R., Randeria, M. & Engelbrecht, J. R. Crossover from BCS to Bose superconductivity: Transition temperature and time-dependent Ginzburg–Landau theory. Phys. Rev. Lett. 71, 3202–3205 (1993).

  11. 11

    Yanase, Y. & Yamada, K. Theory of pseudogap phenomena in high-Tc cuprates based on the strong coupling superconductivity. J. Phys. Soc. Jpn 68, 2999–3015 (1999).

  12. 12

    Bruun, G. M. & Baym, G. Bragg spectroscopy of cold atomic Fermi gases. Phys. Rev. A 74, 033623 (2006).

  13. 13

    Massignan, P., Bruun, G. M. & Stoof, H. T. C. Twin peaks in rf spectra of Fermi gases at unitarity. Phys. Rev. A 77, 031601(R) (2008).

  14. 14

    Barnea, N. Superfluid to insulator phase transition in a unitary Fermi gas. Phys. Rev. A 78, 053629 (2008).

  15. 15

    Magierski, P., Wlazlowski, G., Bulgac, A. & Drut, J. E. The finite temperature pairing gap of a unitary Fermi gas by quantum Monte Carlo. Phys. Rev. Lett. 103, 210403 (2009).

  16. 16

    Chen, Q., He, Y., Chien, C. C. & Levin, K. Theory of radio frequency spectroscopy experiments in ultracold Fermi gases and their relation to photoemission experiments in the cuprates. Rep. Prog. Phys. 72, 122501 (2009).

  17. 17

    Tsuchiya, S., Watanabe, R. & Ohashi, Y. Single-particle properties and pseudogap effects in the BCS-BEC crossover regime of an ultracold Fermi gas above Tc . Phys. Rev. A 80, 033613 (2009).

  18. 18

    Haussmann, R., Punk, M. & Zwerger, W. Spectral functions and rf response of ultracold fermionic atoms. Phys. Rev. A 80, 063612 (2009).

  19. 19

    Chin, C. et al. Observation of the pairing gap in a strongly interacting Fermi gas. Science 305, 1128–1130 (2004).

  20. 20

    Schirotzek, A., Shin, Y., Schunck, C. H. & Ketterle, W. Determination of the superfluid gap in atomic Fermi gases by quasiparticle spectroscopy. Phys. Rev. Lett. 101, 140403 (2008).

  21. 21

    Regal, C. A., Greiner, M. & Jin, D. S. Observation of resonance condensation of fermionic atom pairs. Phys. Rev. Lett. 92, 040403 (2004).

  22. 22

    Chen, Q. & Levin, K. Probing the spectral function using momentum resolved radio frequency spectroscopy in trapped Fermi gases. Phys. Rev. Lett. 102, 190402 (2009).

  23. 23

    Tan, S. Large momentum part of a strongly correlated Fermi gas. Ann. Phys. 323, 2971–2986 (2008).

  24. 24

    Schneider, W. & Randeria, M. Universal short-distance structure of the single-particle spectral function of dilute Fermi gases. Phys. Rev. A 81, 021601 (2010).

  25. 25

    Stewart, J. T., Gaebler, J. P., Drake, T. E. & Jin, D. S. Verification of universal relations in a strongly interacting Fermi gas. Phys. Rev. Lett. 104, 235301 (2010).

  26. 26

    Zwierlein, M. W., Abo-Shaeer, J. R., Schirotzek, A., Schunck, C. H. & Ketterle, W. Vortices and superfluidity in a strongly interacting Fermi gas. Nature 435, 1047–1051 (2005).

  27. 27

    Perali, A., Pieri, P. & Strinati, G. C. Extracting the condensate density from projection experiments with Fermi gases. Phys. Rev. Lett. 95, 010407 (2005).

  28. 28

    Matyjaśkiewicz, S., Szymańska, M. H. & Góral, K. Probing fermionic condensates by fast-sweep projection onto Feshbach molecules. Phys. Rev. Lett. 101, 150410 (2008).

  29. 29

    Zwierlein, M. W., Schunck, C. H., Stan, C. A., Raupach, S. M. F. & Ketterle, W. Formation dynamics of a fermion pair condensate. Phys. Rev. Lett. 94, 180401 (2005).

  30. 30

    Stewart, J. T., Gaebler, J. P., Regal, C. A. & Jin, D. S. Potential energy of a 40K Fermi gas in the BCS–BEC crossover. Phys. Rev. Lett. 97, 220406 (2006).

Download references


We acknowledge financial support from the NSF. We thank the JILA BEC group for discussions. D.S.J acknowledges discussions with A. Kanigel at the Aspen Center for Physics.

Author information

J.P.G., J.T.S., T.E.D. and D.S.J. carried out the experiments and analysed the data. A.P., P.P. and G.C.S. carried out theoretical calculations.

Correspondence to D. S. Jin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gaebler, J., Stewart, J., Drake, T. et al. Observation of pseudogap behaviour in a strongly interacting Fermi gas. Nature Phys 6, 569–573 (2010) doi:10.1038/nphys1709

Download citation

Further reading