Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

How grain boundaries limit supercurrents in high-temperature superconductors


The interface properties of high-temperature (high-Tc) copper oxide superconductors have been of interest for many years, and play an essential role in Josephson junctions, superconducting cables and microwave electronics. In particular, the maximum critical current achievable in high-Tc wires and tapes is well known to be limited by the presence of grain boundaries, regions of mismatch between crystallites with misoriented crystalline axes. Studies of single artificially fabricated grain boundaries have revealed that the critical current Jc of a grain boundary junction depends exponentially on the misorientation angle. Until now microscopic understanding of this apparently universal behaviour has been lacking. We present here the results of a microscopic evaluation based on a construction of fully three-dimensional YBa2Cu3O7−δ grain boundaries using molecular dynamics. With these structures, we calculate an effective tight-binding Hamiltonian for the d-wave superconductor with a grain boundary. The critical current is then shown to follow an exponential suppression with grain boundary angle α. We identify the build-up of charge inhomogeneities as the dominant mechanism for the suppression of the supercurrent.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic diagram of an HTS symmetric grain boundary.
Figure 2: Top view of a calculated (410) grain boundary.
Figure 3: Tight-binding model for the CuO2 plane.
Figure 4: Charging of the CuO4 squares.
Figure 5: Supercurrent distribution.
Figure 6: Angle dependence of the critical current.


  1. Hilgenkamp, H. & Mannhart, J. Grain boundaries in high-Tc superconductors. Rev. Mod. Phys. 74, 485–549 (2002).

    Article  ADS  Google Scholar 

  2. Dimos, D., Chaudhari, P., Mannhart, J. & LeGoues, F. K. Orientation dependence of grain-boundary critical currents in YBa2Cu3O7−δ bicrystals. Phys. Rev. Lett. 61, 219–222 (1988).

    Article  ADS  Google Scholar 

  3. Chaudhari, P., Dimos, D. & Mannhart, J. in Earlier and Recent Aspects of Superconductivity (eds Bednorz, J. G. & Müller, K. A.) 201–207 (Springer, 1990).

    Book  Google Scholar 

  4. Sigrist, M. & Rice, T. M. Paramagnetic effect in high Tc superconductors —a hint for d-wave superconductivity. J. Phys. Soc. Jpn 61, 4283–4286 (1992).

    Article  ADS  Google Scholar 

  5. Sigrist, M. & Rice, T. M. On the phenomenology of superconductivity in cuprate materials. J. Low Temp Phys. 95, 389–393 (1994).

    Article  ADS  Google Scholar 

  6. Yokoyama, T., Sawa, Y., Tanaka, Y. & Golubov, A. A. Angular dependence of Josephson currents in unconventional superconducting junctions. Phys. Rev. B 75, 020502(R) (2007).

    Article  ADS  Google Scholar 

  7. Gurevich, A. & Pashitskii, E. A. Current transport through low-angle grain boundaries in high-temperature superconductors. Phys. Rev. B. 57, 13878–13893 (1998).

    Article  ADS  Google Scholar 

  8. Stolbov, S. V., Mironova, M. K. & Salama, K. Microscopic origins of the grain boundary effect on the critical current in superconducting copper oxides. Supercond. Sci. Technol. 12, 1071–1074 (1999).

    Article  ADS  Google Scholar 

  9. Pennycook, S. J. et al. in Studies of High Temperature Superconductors: Microstructures and Related Studies of High Temperature Superconductors-II Vol. 30 (ed. Narlikar, A. V.) Ch. 6 (Nova Science Publishers, 2000).

    Google Scholar 

  10. Hu, C-R. Midgap surface states as a novel signature for d x a 2 − x b 2 -wave superconductivity. Phys. Rev. Lett. 72, 1526–1529 (1993).

    Article  ADS  Google Scholar 

  11. Tanaka, Y. & Kashiwaya, S. Theory of tunneling spectroscopy of d-wave superconductors. Phys. Rev. Lett. 74, 3451–3454 (1994).

    Article  ADS  Google Scholar 

  12. Löfwander, T., Shumeiko, V. S. & Wendin, G. Andreev bound states in high-Tc superconducting junctions. Supercond. Sci. Technol. 14, R53–R77 (2001).

    Article  ADS  Google Scholar 

  13. Tanaka, Y. & Kashiwaya, S. Theory of the Josephson effect in d-wave superconductors. Phys. Rev. B 53, R11957–R11960 (1996).

    Article  ADS  Google Scholar 

  14. Barash, Yu. S., Burkhardt, H. & Rainer, D. Low-temperature anomaly in the Josephson critical current of junctions in d-wave superconductors. Phys. Rev. Lett. 77, 4070–4073 (1996).

    Article  ADS  Google Scholar 

  15. Tanaka, Y. & Kashiwaya, S. Theory of Josephson effects in anisotropic superconductors. Phys. Rev. B 56, 892–912 (1997).

    Article  ADS  Google Scholar 

  16. Baetzold, R. C. Atomistic simulation of ionic and electronic defects in YBa2Cu3O7 . Phys. Rev. B 38, 11304–11312 (1988).

    Article  ADS  Google Scholar 

  17. Zhang, X. & Catlow, C. R. A. Molecular dynamics study of oxygen diffusion in YBa2Cu3O6.91 . Phys. Rev. B 46, 457–462 (1992).

    Article  ADS  Google Scholar 

  18. Liu, P. & Wang, Y. Theoretical study on the structure of Cu(110)-p2×1–O reconstruction. J. Phys. Condens. Matter 12, 3955–3966 (2000).

    Article  ADS  Google Scholar 

  19. Phillpot, S. R. & Rickman, J. M. Simulated quenching to the zero-temperature limit of the grand-canonical ensemble. J. Chem. Phys. 97, 2651–2659 (1992).

    Article  ADS  Google Scholar 

  20. Slater, J. C. & Koster, G. F. Simplified LCAO method for the periodic potential problem. Phys. Rev. 94, 1498–1524 (1954).

    Article  ADS  Google Scholar 

  21. Harrison, W. A. Electronic Structure and the Properties of Solids (Dover Publications, 1989).

    Google Scholar 

  22. Chmaissem, O., Eckstein, Y. & Kuper, C. G. The structure and a bond-valence-sum study of the 1-2-3 superconductors (CaxLa1−x)(Ba1.75−xLa0.25+x)Cu3Oy and YBa2Cu3Oy . Phys. Rev. B 63, 174510 (2001).

    Article  ADS  Google Scholar 

  23. Brown, I. D. A determination of the oxidation states and internal stress in Ba2YCu3Oxx=6−7 using bond valences. J. Solid State Chem. 82, 122–131 (1989).

    Article  ADS  Google Scholar 

  24. Zhang, F. C. & Rice, T. M. Effective Hamiltonian for the superconducting Cu oxides. Phys. Rev. B 37, 3759–3761 (1988).

    Article  ADS  Google Scholar 

  25. Andersen, B. M., Bobkova, I., Barash, Yu. S. & Hirschfeld, P. J. 0–π transitions in Josephson junctions with antiferromagnetic interlayers. Phys. Rev. Lett. 96, 117005–117008 (2006).

    Article  ADS  Google Scholar 

  26. Freericks, J. K. Transport in Multilayered Nanostructures. The Dynamical Mean-Field Theory Approach (Imperial College Press, 2006).

    Book  Google Scholar 

  27. Andersen, B. M., Barash, Yu. S., Graser, S. & Hirschfeld, P. J. Josephson effects in d-wave superconductor junctions with antiferromagnetic interlayers. Phys. Rev. B 77, 054501 (2008).

    Article  ADS  Google Scholar 

  28. Lee, S. et al. Weak-link behavior of grain boundaries in superconducting Ba(Fe1−xCox)2As2 bicrystals. Appl. Phys. Lett. 95, 212505 (2009).

    Article  ADS  Google Scholar 

  29. Hammerl, G. et al. Possible solution of the grain-boundary problem for applications of high-Tc superconductors. Appl. Phys. Lett. 81, 3209–3211 (2002).

    Article  ADS  Google Scholar 

Download references


This work was supported by DOE grant DE-FG02-05ER46236 (P.J.H.), and by the DFG through SFB 484 and TRR 80 (S.G., T.K., R.G. and J.M.) and a research scholarship (S.G.). We are grateful to Yu. S. Barash for important early contributions to the project and we acknowledge fruitful discussions with A. Gurevich and F. Loder. P.J.H. would also like to thank the Kavli Institute for Theoretical Physics for support under NSF-PHY05-51164 during the writing of this manuscript. The authors acknowledge the University of Florida High-Performance Computing Center for providing computational resources and support that have contributed to the research results reported in this article.

Author information

Authors and Affiliations



R.G. applied the Slater–Koster technique to derive an effective tight-binding model Hamiltonian at the grain boundary and B.M.A. contributed in setting up the Bogoliubov–de Gennes equations for the calculation of the critical current. S.G. carried out the numerical calculations under the supervision of P.J.H. and T.K. J.M. contributed with his experience and knowledge about grain boundaries and the physical length scales involved. All authors contributed to the analysis of the results. P.J.H., T.K., J.M. and S.G. wrote the manuscript.

Corresponding author

Correspondence to S. Graser.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 862 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Graser, S., Hirschfeld, P., Kopp, T. et al. How grain boundaries limit supercurrents in high-temperature superconductors. Nature Phys 6, 609–614 (2010).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing