Abstract
After the discovery of zero viscosity in liquid helium, other fundamental properties of the superfluidity phenomenon have been revealed. One of them, irrotational flow, gives rise to quantized vortices and persistent currents. Those are the landmarks of superfluidity in its modern understanding. Recently, a new variety of dissipationless fluid behaviour has been found in microcavities under the optical parametric regime. Here we report the observation of metastable persistent polariton superflows sustaining a quantized angular momentum, m, after applying a 2-ps laser pulse carrying a vortex state. We observe a transfer of angular momentum to the steady-state condensate, which sustains vorticity for as long as it can be tracked. Furthermore, we study the stability of quantized vortices with m=2. The experiments are analysed using a generalized two-component Gross–Pitaevskii equation. These results demonstrate the control of metastable persistent currents and show the peculiar superfluid character of non-equilibrium polariton condensates.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Uncovering temperature-dependent exciton-polariton relaxation mechanisms in hybrid organic-inorganic perovskites
Nature Communications Open Access 27 April 2023
-
Steady state oscillations of circular currents in concentric polariton condensates
Scientific Reports Open Access 21 March 2023
-
Room-temperature polariton quantum fluids in halide perovskites
Nature Communications Open Access 30 November 2022
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout





References
Kasprzak, J. et al. Bose–Einstein condensation of exciton polaritons. Nature 443, 409–414 (2006).
Weisbuch, C., Nishioka, M., Ishikawa, A. & Arakawa, Y. Observation of the coupled exciton–photon mode splitting in a semiconductor quantum microcavity. Phys. Rev. Lett. 69, 3314–3317 (1992).
Keeling, J., Marchetti, F. M., Szymańska, M. H. & Littlewood, P. B. Collective coherence in planar semiconductor microcavities. Semicond. Sci. Technol. 22, R1–R26 (2006).
Keeling, J. & Berloff, N. G. Going with the flow. Nature 457, 273–274 (2009).
Balili, R., Hartwell, V., Snoke, D., Pfeiffer, L. & West, K. Bose–Einstein condensation of microcavity polaritons in a trap. Science 316, 1007–1010 (2007).
Lai, C. W. et al. Coherent zero-state and π-state in an exciton–polariton condensate array. Nature 450, 529–532 (2007).
Szymańska, M. H., Keeling, J. & Littlewood, P. B. Nonequilibrium quantum condensation in an incoherently pumped dissipative system. Phys. Rev. Lett. 96, 230602 (2006).
Wouters, M. & Carusotto, I. Excitations in a nonequilibrium Bose–Einstein condensate of exciton polaritons. Phys. Rev. Lett. 99, 140402 (2007).
Wouters, M. & Carusotto, I. Are non-equilibrium Bose–Einstein condensates superfluid? Preprint at http://www.arxiv.org/abs/1001.0660 (2010).
Lagoudakis, K. G. et al. Quantised vortices in an exciton–polariton fluid. Nature Phys. 4, 706–710 (2008).
Rubo, Y. G. Half vortices in exciton polariton condensates. Phys. Rev. Lett. 99, 106401 (2007).
Lagoudakis, K. G. et al. Observation of half-quantum vortices in an exciton–polariton condensate. Science 326, 974–976 (2009).
Amo, A. et al. Collective fluid dynamics of a polariton condensate in a semiconductor microcavity. Nature 457, 291–295 (2009).
Amo, A. et al. Superfluidity of polaritons in semiconductor microcavities. Nature Phys. 5, 805–810 (2009).
Stevenson, R. M. et al. Continuous wave observation of massive polariton redistribution by stimulated scattering in semiconductor microcavities. Phys. Rev. Lett. 85, 3680–3683 (2000).
Molina-Terriza, G., Torres, J. P. & Torner, L. Twisted photons. Nature Phys. 3, 305–310 (2007).
Dholakia, K., Simpson, N. B., Padgett, M. J. & Allen, L. Second harmonic generation and the orbital angular momentum of light. Phys. Rev. A 54, R3742–R3745 (1996).
Martinelli, M., Huguenin, J. A. O., Nussenzveig, P. & Khuory, A. Z. Orbital angular momentum exchange in an optical parametric oscillator. Phys. Rev. B 70, 013812 (2004).
Andersen, M. F. et al. Quantized rotation of atoms from photons with orbital angular momentum. Phys. Rev. Lett. 97, 170406 (2006).
Ryu, C. et al. Observation of persistent flow of a Bose–Einstein condensate in a toroidal trap. Phys. Rev. Lett. 99, 260401 (2007).
Shin, Y. et al. Dynamical instability of a doubly quantized vortex in a Bose–Einstein condensate. Phys. Rev. Lett. 93, 160406 (2004).
Baert, M., Metlushko, V. V., Jonckheere, R., Moshchalkov, V. V. & Bruynseraede, Y. Composite flux-line lattices stabilized in superconducting films by a regular array of artificial defects. Phys. Rev. Lett. 74, 3269–3272 (1995).
Blaauwgeers, R. et al. Double-quantum vortex in superfluid 3He–A. Nature 404, 471–473 (2000).
Möttönen, M., Mizushima, T., Isoshima, T., Salomaa, M. M. & Machida, K. Splitting of a doubly quantized vortex through intertwining in Bose–Einstein condensates. Phys. Rev. A 68, 023611 (2003).
Wouters, M. & Savona, V. Creation and detection of vortices in polariton condensates. Phys. Rev. B 81, 054508 (2010).
Sanvitto, D. et al. Spatial structure and stability of the macroscopically occupied polariton state in the microcavity optical parametric oscillator. Phys. Rev. B 73, 241308 (2006).
Whittaker, D. Vortices in the microcavity optical parametric oscillator. Superlattices Microstruct. 41, 297–300 (2007).
Ballarini, D. et al. Observation of long-lived polariton states in semiconductor microcavities across the parametric threshold. Phys. Rev. Lett. 102, 056402 (2009).
Ciuti, C., Schwendimann, P. & Quattropani, A. Theory of polariton parametric interactions in semiconductor microcavities. Semicond. Sci. Technol. 18, S279–S293 (2003).
Acknowledgements
We are grateful to D. Whittaker, J. J. García-Ripoll, P. B. Littlewood and J. Keeling for stimulating discussions. This work was partially supported by the Spanish MEC (MAT2008-01555 and QOIT-CSD2006-00019), the CAM (S2009/ESP-1503), FP7 ITNs ‘Clermont4’ (235114) and ‘Spin-Optronics’ (237252). D.S. and F.M.M. acknowledge financial support from the Ramón y Cajal programme. G.T. is grateful for the FPI scholarship from the Ministerio de Ciencia e Innovación. We thank the TCM group (Cavendish Laboratory, Cambridge, UK) for the use of computer resources.
Author information
Authors and Affiliations
Contributions
D.S., G.T. and M.B. carried out the experiments. F.M.M. and M.H.S. carried out the theoretical analysis. L.M. provided the holograms for getting vortex excitation and A.L. and J.B. fabricated the samples. All of the authors analysed the results, discussed the underlying physics and contributed to the manuscript.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary Information
Supplementary Information (PDF 450 kb)
Supplementary Movie
Supplementary Video 2(a-d) (AVI 6627 kb)
Supplementary Movie
Supplementary Video 2(e-h) (AVI 9804 kb)
Supplementary Movie
Supplementary Video 3 (AVI 1628 kb)
Supplementary Movie
Supplementary Video 4(c) (AVI 6024 kb)
Supplementary Movie
Supplementary Video 4(f) (AVI 7586 kb)
Supplementary Movie
Supplementary Video 4(g-i) (AVI 9848 kb)
Supplementary Movie
Supplementary Video 4(g-i)-interferences (AVI 9531 kb)
Supplementary Movie
Supplementary Video 5 (AVI 384 kb)
Supplementary Movie
Supplementary Video 8 (AVI 772 kb)
Rights and permissions
About this article
Cite this article
Sanvitto, D., Marchetti, F., Szymańska, M. et al. Persistent currents and quantized vortices in a polariton superfluid. Nature Phys 6, 527–533 (2010). https://doi.org/10.1038/nphys1668
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nphys1668
This article is cited by
-
Uncovering temperature-dependent exciton-polariton relaxation mechanisms in hybrid organic-inorganic perovskites
Nature Communications (2023)
-
Steady state oscillations of circular currents in concentric polariton condensates
Scientific Reports (2023)
-
Polariton Bose–Einstein condensate from a bound state in the continuum
Nature (2022)
-
Non-equilibrium Bose–Einstein condensation in photonic systems
Nature Reviews Physics (2022)
-
Optically trapped room temperature polariton condensate in an organic semiconductor
Nature Communications (2022)