Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Persistent currents and quantized vortices in a polariton superfluid

Abstract

After the discovery of zero viscosity in liquid helium, other fundamental properties of the superfluidity phenomenon have been revealed. One of them, irrotational flow, gives rise to quantized vortices and persistent currents. Those are the landmarks of superfluidity in its modern understanding. Recently, a new variety of dissipationless fluid behaviour has been found in microcavities under the optical parametric regime. Here we report the observation of metastable persistent polariton superflows sustaining a quantized angular momentum, m, after applying a 2-ps laser pulse carrying a vortex state. We observe a transfer of angular momentum to the steady-state condensate, which sustains vorticity for as long as it can be tracked. Furthermore, we study the stability of quantized vortices with m=2. The experiments are analysed using a generalized two-component Gross–Pitaevskii equation. These results demonstrate the control of metastable persistent currents and show the peculiar superfluid character of non-equilibrium polariton condensates.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Polariton dispersion, probe beam and its interference.
Figure 2: Experimental dynamics of a single vortex.
Figure 3: Theoretical dynamics of a single vortex.
Figure 4: Experimental dynamics of a doubly quantized vortex.
Figure 5: Theoretical dynamics of a doubly quantized vortex.

Similar content being viewed by others

References

  1. Kasprzak, J. et al. Bose–Einstein condensation of exciton polaritons. Nature 443, 409–414 (2006).

    Article  ADS  Google Scholar 

  2. Weisbuch, C., Nishioka, M., Ishikawa, A. & Arakawa, Y. Observation of the coupled exciton–photon mode splitting in a semiconductor quantum microcavity. Phys. Rev. Lett. 69, 3314–3317 (1992).

    Article  ADS  Google Scholar 

  3. Keeling, J., Marchetti, F. M., Szymańska, M. H. & Littlewood, P. B. Collective coherence in planar semiconductor microcavities. Semicond. Sci. Technol. 22, R1–R26 (2006).

    Article  Google Scholar 

  4. Keeling, J. & Berloff, N. G. Going with the flow. Nature 457, 273–274 (2009).

    Article  ADS  Google Scholar 

  5. Balili, R., Hartwell, V., Snoke, D., Pfeiffer, L. & West, K. Bose–Einstein condensation of microcavity polaritons in a trap. Science 316, 1007–1010 (2007).

    Article  ADS  Google Scholar 

  6. Lai, C. W. et al. Coherent zero-state and π-state in an exciton–polariton condensate array. Nature 450, 529–532 (2007).

    Article  ADS  Google Scholar 

  7. Szymańska, M. H., Keeling, J. & Littlewood, P. B. Nonequilibrium quantum condensation in an incoherently pumped dissipative system. Phys. Rev. Lett. 96, 230602 (2006).

    Article  ADS  Google Scholar 

  8. Wouters, M. & Carusotto, I. Excitations in a nonequilibrium Bose–Einstein condensate of exciton polaritons. Phys. Rev. Lett. 99, 140402 (2007).

    Article  ADS  Google Scholar 

  9. Wouters, M. & Carusotto, I. Are non-equilibrium Bose–Einstein condensates superfluid? Preprint at http://www.arxiv.org/abs/1001.0660 (2010).

  10. Lagoudakis, K. G. et al. Quantised vortices in an exciton–polariton fluid. Nature Phys. 4, 706–710 (2008).

    Article  ADS  Google Scholar 

  11. Rubo, Y. G. Half vortices in exciton polariton condensates. Phys. Rev. Lett. 99, 106401 (2007).

    Article  ADS  Google Scholar 

  12. Lagoudakis, K. G. et al. Observation of half-quantum vortices in an exciton–polariton condensate. Science 326, 974–976 (2009).

    Article  ADS  Google Scholar 

  13. Amo, A. et al. Collective fluid dynamics of a polariton condensate in a semiconductor microcavity. Nature 457, 291–295 (2009).

    Article  ADS  Google Scholar 

  14. Amo, A. et al. Superfluidity of polaritons in semiconductor microcavities. Nature Phys. 5, 805–810 (2009).

    Article  ADS  Google Scholar 

  15. Stevenson, R. M. et al. Continuous wave observation of massive polariton redistribution by stimulated scattering in semiconductor microcavities. Phys. Rev. Lett. 85, 3680–3683 (2000).

    Article  ADS  Google Scholar 

  16. Molina-Terriza, G., Torres, J. P. & Torner, L. Twisted photons. Nature Phys. 3, 305–310 (2007).

    Article  ADS  Google Scholar 

  17. Dholakia, K., Simpson, N. B., Padgett, M. J. & Allen, L. Second harmonic generation and the orbital angular momentum of light. Phys. Rev. A 54, R3742–R3745 (1996).

    Article  ADS  Google Scholar 

  18. Martinelli, M., Huguenin, J. A. O., Nussenzveig, P. & Khuory, A. Z. Orbital angular momentum exchange in an optical parametric oscillator. Phys. Rev. B 70, 013812 (2004).

    Article  ADS  Google Scholar 

  19. Andersen, M. F. et al. Quantized rotation of atoms from photons with orbital angular momentum. Phys. Rev. Lett. 97, 170406 (2006).

    Article  ADS  Google Scholar 

  20. Ryu, C. et al. Observation of persistent flow of a Bose–Einstein condensate in a toroidal trap. Phys. Rev. Lett. 99, 260401 (2007).

    Article  ADS  Google Scholar 

  21. Shin, Y. et al. Dynamical instability of a doubly quantized vortex in a Bose–Einstein condensate. Phys. Rev. Lett. 93, 160406 (2004).

    Article  ADS  Google Scholar 

  22. Baert, M., Metlushko, V. V., Jonckheere, R., Moshchalkov, V. V. & Bruynseraede, Y. Composite flux-line lattices stabilized in superconducting films by a regular array of artificial defects. Phys. Rev. Lett. 74, 3269–3272 (1995).

    Article  ADS  Google Scholar 

  23. Blaauwgeers, R. et al. Double-quantum vortex in superfluid 3He–A. Nature 404, 471–473 (2000).

    Article  ADS  Google Scholar 

  24. Möttönen, M., Mizushima, T., Isoshima, T., Salomaa, M. M. & Machida, K. Splitting of a doubly quantized vortex through intertwining in Bose–Einstein condensates. Phys. Rev. A 68, 023611 (2003).

    Article  ADS  Google Scholar 

  25. Wouters, M. & Savona, V. Creation and detection of vortices in polariton condensates. Phys. Rev. B 81, 054508 (2010).

    Article  ADS  Google Scholar 

  26. Sanvitto, D. et al. Spatial structure and stability of the macroscopically occupied polariton state in the microcavity optical parametric oscillator. Phys. Rev. B 73, 241308 (2006).

    Article  ADS  Google Scholar 

  27. Whittaker, D. Vortices in the microcavity optical parametric oscillator. Superlattices Microstruct. 41, 297–300 (2007).

    Article  ADS  Google Scholar 

  28. Ballarini, D. et al. Observation of long-lived polariton states in semiconductor microcavities across the parametric threshold. Phys. Rev. Lett. 102, 056402 (2009).

    Article  ADS  Google Scholar 

  29. Ciuti, C., Schwendimann, P. & Quattropani, A. Theory of polariton parametric interactions in semiconductor microcavities. Semicond. Sci. Technol. 18, S279–S293 (2003).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We are grateful to D. Whittaker, J. J. García-Ripoll, P. B. Littlewood and J. Keeling for stimulating discussions. This work was partially supported by the Spanish MEC (MAT2008-01555 and QOIT-CSD2006-00019), the CAM (S2009/ESP-1503), FP7 ITNs ‘Clermont4’ (235114) and ‘Spin-Optronics’ (237252). D.S. and F.M.M. acknowledge financial support from the Ramón y Cajal programme. G.T. is grateful for the FPI scholarship from the Ministerio de Ciencia e Innovación. We thank the TCM group (Cavendish Laboratory, Cambridge, UK) for the use of computer resources.

Author information

Authors and Affiliations

Authors

Contributions

D.S., G.T. and M.B. carried out the experiments. F.M.M. and M.H.S. carried out the theoretical analysis. L.M. provided the holograms for getting vortex excitation and A.L. and J.B. fabricated the samples. All of the authors analysed the results, discussed the underlying physics and contributed to the manuscript.

Corresponding authors

Correspondence to D. Sanvitto or F. M. Marchetti.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 450 kb)

Supplementary Movie

Supplementary Video 2(a-d) (AVI 6627 kb)

Supplementary Movie

Supplementary Video 2(e-h) (AVI 9804 kb)

Supplementary Movie

Supplementary Video 3 (AVI 1628 kb)

Supplementary Movie

Supplementary Video 4(c) (AVI 6024 kb)

Supplementary Movie

Supplementary Video 4(f) (AVI 7586 kb)

Supplementary Movie

Supplementary Video 4(g-i) (AVI 9848 kb)

Supplementary Movie

Supplementary Video 4(g-i)-interferences (AVI 9531 kb)

Supplementary Movie

Supplementary Video 5 (AVI 384 kb)

Supplementary Movie

Supplementary Video 8 (AVI 772 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sanvitto, D., Marchetti, F., Szymańska, M. et al. Persistent currents and quantized vortices in a polariton superfluid. Nature Phys 6, 527–533 (2010). https://doi.org/10.1038/nphys1668

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys1668

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing