Laser-driven particle accelerators can accelerate electrons to energies in excess of 1 GeV over a distance of just a few centimetres. An innovative technique that drastically reduces the computational demands of simulating laser–plasma interactions should help increase this to tens of gigaelectronvolts.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout

References
Tajima, T. & Dawson, J. M. Phys. Rev. Lett. 43, 267–270 (1979).
Chen, P., Dawson, J. M., Huff, R. W. & Katsouleas, T. Phys. Rev. Lett. 54, 693–696 (1985).
Martins, S. F., Fonseca, R. A., Lu, W., Mori, W. B. & Silva, L. O. Nature Phys. 6, 311–316 (2010). 10.1038/nphys1538
Clayton, C. E. et al. Phys. Rev. Lett. 70, 37–40 (1993).
Everett, M. et al. Nature 368, 527–429 (1994).
Mangles, S. et al. Nature 431, 535–538 (2004).
Geddes, C. et al. Nature 431, 538–541 (2004).
Faure, J. et al. Nature 431, 541–544 (2004).
Geddes, C. G. R. et al. Nature Phys. 2, 696–699 (2006).
Vay, J.-L. Phys. Rev. Lett. 98, 130405 (2007).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Trines, R. Plasma models get a boost. Nature Phys 6, 239–240 (2010). https://doi.org/10.1038/nphys1642
Issue Date:
DOI: https://doi.org/10.1038/nphys1642