Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Massively parallel computing on an organic molecular layer

Abstract

Modern computers operate at enormous speeds—capable of executing in excess of 1013 instructions per second—but their sequential approach to processing, by which logical operations are performed one after another, has remained unchanged since the 1950s. In contrast, although individual neurons of the human brain fire at around just 103 times per second, the simultaneous collective action of millions of neurons enables them to complete certain tasks more efficiently than even the fastest supercomputer. Here we demonstrate an assembly of molecular switches that simultaneously interact to perform a variety of computational tasks including conventional digital logic, calculating Voronoi diagrams, and simulating natural phenomena such as heat diffusion and cancer growth. As well as representing a conceptual shift from serial-processing with static architectures, our parallel, dynamically reconfigurable approach could provide a means to solve otherwise intractable computational problems.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: The concept of a wireless molecular circuit.
Figure 2: Discrete logic-state transport rules.
Figure 3: Information encoding, retrieving, transport and logic-gate operation.
Figure 4: Computing constructs, density classification and Voronoi decomposition.
Figure 5: Mimicking natural phenomenon I: electron diffusion.
Figure 6: Mimicking natural phenomenon II: evolution of cancer cells.

References

  1. 1

    Higuchi, T. et al. Proc. of ICEC 187–192 (IEEE, 1997).

    Google Scholar 

  2. 2

    Neumann, J. V. in The Theory of Self-Reproducing Automata (ed. Burks, A. W.) (Univ. Illinois Press, 1966).

    Google Scholar 

  3. 3

    Wolfram, S. A New Kind of Science 223–848 (Wolfram Media Inc., 2002).

    MATH  Google Scholar 

  4. 4

    Crutchfeld, J. P., Mitchell, M. & Das, R. in Evolutionary Dynamics Exploring the Interplay of Selection, Neutrality, Accident, and Function (eds Crutchfield, J. P. & Schuster, P. K.) (Oxford Univ. Press, 2002).

    Google Scholar 

  5. 5

    Hopfield, J. J. & Tank, D. W. Collective computation in neuron like circuits. Sci. Am. 255, 104–114 (1987).

    Google Scholar 

  6. 6

    Adamatzky, A. & Teuscher, C. (eds) From Utopian to Genuine Unconventional Computers (Uniliver Press, 2006).

  7. 7

    Silva, A. P. & de Uchiyama, S. Molecular logic and computing. Nature Nanotech. 2, 399–410 (2007).

    ADS  Google Scholar 

  8. 8

    Jones, R. Computing with molecules. Nature Nanotech. 4, 207 (2009).

    ADS  Article  Google Scholar 

  9. 9

    Credi, A. Monolayers with an IQ. Nature Nanotech. 3, 529–530 (2008).

    ADS  Article  Google Scholar 

  10. 10

    Lent, C. S., Isaksen, B. & Lieberman, M. Molecular quantum-dot cellular automata. J. Am. Chem. Soc. 125, 1056–1063 (2003).

    Article  Google Scholar 

  11. 11

    Orlov, A. O., Amlani, I., Bernstein, G. H., Lent, C. S. & Snider, G. L. Realization of a functional cell for quantum-dot. Cell. Automata Sci. 277, 928–930 (1997).

    Google Scholar 

  12. 12

    Qi, H. et al. Molecular quantum cellular automata cells. Electric field driven switching of a silicon surface bound array of vertically oriented two-dot molecular quantum cellular automata. J. Am. Chem. Soc. 125, 15250–15259 (2003).

    Article  Google Scholar 

  13. 13

    Imre, A. et al. Majority logic gate for magnetic quantum-dot. Cell. Automata Sci. 311, 205–208 (2006).

    Google Scholar 

  14. 14

    Chen, J., Reed, M. A., Rawlett, A. M. & Tour, J. M. Large On–Off ratios and negative differential resistance in a molecular electronic device. Science 286, 1550–1552 (1999).

    Article  Google Scholar 

  15. 15

    Pease, A. R. et al. Switching devices based on interlocked molecules. Acc. Chem. Res. 34, 433–444 (2001).

    Google Scholar 

  16. 16

    Pati, R., McCLain, M. & Bandyopadhyay, A. Origin of negative differential resistance in strongly coupled molecular junctions. Phys. Rev. Lett. 100, 246801 (2008).

    ADS  Article  Google Scholar 

  17. 17

    Bandyopadhyay, A., Miki, K. & Wakayama, Y. Writing and erasing information in multilevel logic systems of a single molecule using scanning tunneling microscope (STM). Appl. Phys. Lett. 89, 243507 (2006).

    ADS  Article  Google Scholar 

  18. 18

    Bandyopadhyay, A. & Acharya, S. A 16-bit parallel processing in a molecular assembly. Proc. Natl Acad. Sci. USA 105, 3668–3672 (2008).

    ADS  Article  Google Scholar 

  19. 19

    Kirakosian, A., Comstock, M. J., Cho, J. & Crommie, M. F. Molecular commensurability with a surface reconstruction: STM study of azobenzene on Au(111). Phys. Rev. B 71, 113409 (2005).

    ADS  Article  Google Scholar 

  20. 20

    Cunha, F. & Tao, N. J. Surface charge induced order–disorder transition in an organic monolayer. Phys. Rev. Lett. 75, 2376–2379 (1995).

    ADS  Article  Google Scholar 

  21. 21

    Onsagar, L. The effect of shape on the interaction of colloidal particles. N.Y. Acad. Sci. 51, 627 (1949).

    ADS  Article  Google Scholar 

  22. 22

    Müller, T., Werblowsky, T. L., Florio, G. M., Berne, B. J. & Flynn, G. W. Ultra-high vacuum scanning tunneling microscopy and theoretical studies of 1-halohexane monolayers on graphite. Proc. Natl Acad. Sci. USA 102, 5315–5322 (2005).

    ADS  Article  Google Scholar 

  23. 23

    Dri, C., Peters, M. V., Schwarz, J., Hecht, S. & Grill, L. Spatial periodicity in molecular switching. Nature Nanotech. 3, 649–653 (2008).

    ADS  Article  Google Scholar 

  24. 24

    Toffoli, T. Cellular automata as an alternative to (rather than an approximation of ) differential equations in modeling. Physica D: Nonlinear Phenom. 10, 117–127 (1984).

    ADS  MathSciNet  Article  Google Scholar 

  25. 25

    Wolfram, S. Method and apparatus for simulating systems described by partial differential equations. US patent number 4,809,202 (1989).

  26. 26

    Nowak, M. A. Evolutionary Dynamics: Exploring the Equations of Life (The Belknap Press of Harvard Univ. Press, 2006).

    MATH  Google Scholar 

  27. 27

    Benenson, Y. et al. Programmable and autonomous computing machine made of biomolecules. Nature 414, 430–434 (2001).

    ADS  Article  Google Scholar 

  28. 28

    Hjelmfelt, A., Weinberger, E. D. & Ross, J. Chemical implementation of neural networks and Turing machines. Proc. Natl Acad. Sci. USA 8, 10983–10987 (1991).

    Article  Google Scholar 

  29. 29

    Ruben, A. J. & Landweber, L. F. The past, present and future of molecular computing. Nature Rev. Mol. Cell Biol. 1, 69–72 (2000).

    Article  Google Scholar 

  30. 30

    Landauer, R. Dissipation and noise immunity in computation and communication. Nature 335, 779–784 (1988).

    ADS  Article  Google Scholar 

  31. 31

    Fredkin, E. & Toffoli, T. Conservative logic. Int. J. Theor. Phys. 21, 219–253 (1982).

    MathSciNet  Article  Google Scholar 

  32. 32

    Jiménez Morales, F., Crutchfield, J. P. & Mitchell, M. Evolving two-dimensional cellular automata to perform density classification: A report on work in progress. Parallel Comput. 27, 571–585 (2001).

    Article  Google Scholar 

  33. 33

    Korobov, A. Discrete versus continual description of solid state reaction dynamics from the angle of meaningful. Simul. Discrete Dynam. Nature Soc. 4, 165–179 (2000).

    Article  Google Scholar 

  34. 34

    Gaylord, R. J. & Nishidate, K. Modeling Nature (Springer, 1996).

    Book  Google Scholar 

Download references

Acknowledgements

Authors acknowledge H. Hossainkhani, Y. Wakayama, J. Rampe, M. McClain, W. Cantrel and J. Liebescheutz for discussion. The work is partially funded by the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan during 2005–2008 and Grants in Aid for Young Scientists (A) for 2009–2011, Grant number 21681015. R.P. acknowledges National Science Foundation (NSF) Award number ECCS-0643420.

Author information

Affiliations

Authors

Contributions

A.B. designed the research; A.B. did the experiment; A.B. developed the CA simulator; R.P., A.B. and S.S. did the theoretical studies; A.B., R.P., S.S. and F.P. analysed the data; and A.B., R.P., F.P. and S.S. wrote the paper together; D.F. reviewed the work.

Corresponding author

Correspondence to Anirban Bandyopadhyay.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 717 kb)

Supplementary Movie

Supplementary Movie 1 (WMV 12229 kb)

Supplementary Movie

Supplementary Movie 2 (WMV 1451 kb)

Supplementary Movie

Supplementary Movie 3 (WMV 1965 kb)

Supplementary Movie

Supplementary Movie 4 (WMV 10441 kb)

Supplementary Movie

Supplementary Movie 5 (WMV 2752 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bandyopadhyay, A., Pati, R., Sahu, S. et al. Massively parallel computing on an organic molecular layer. Nature Phys 6, 369–375 (2010). https://doi.org/10.1038/nphys1636

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing