Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Why do particle clouds generate electric charges?


Grains in desert sandstorms spontaneously generate strong electrical charges; likewise volcanic dust plumes produce spectacular lightning displays. Charged particle clouds also cause devastating explosions in food, drug and coal processing industries. Despite the wide-ranging importance of granular charging in both nature and industry, even the simplest aspects of its causes remain elusive, because it is difficult to understand how inert grains in contact with little more than other inert grains can generate the large charges observed. Here, we present a simple yet predictive explanation for the charging of granular materials in collisional flows. We argue from very basic considerations that charge transfer can be expected in collisions of identical dielectric grains in the presence of an electric field, and we confirm the model’s predictions using discrete-element simulations and a tabletop granular experiment.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Proposed charging mechanism of colliding particles in an electric field.
Figure 2: Simulation results.
Figure 3: Experiment.
Figure 4: Numbers of levitated grains in experiments and simulations.


  1. Baddeley, P. F. H. Whirlwinds and Dust-Storms of India 3–4 (Bell & Daldy, 1860).

    Google Scholar 

  2. Shaw, P. E. The electrical charges from like charges. Nature 118, 659–660 (1926).

    Article  Google Scholar 

  3. Gill, E. W. B. Frictional electrification of sand. Nature 162, 568–569 (1948).

    ADS  Article  Google Scholar 

  4. Anderson, R. et al. Electricity in volcanic clouds. Science 148, 1179–1189 (1965).

    ADS  Article  Google Scholar 

  5. Kamra, A. K. Visual observation of electric sparks on gypsum dunes. Nature 240, 143–144 (1972).

    ADS  Article  Google Scholar 

  6. Brook, M. & Moore, C. B. Lightning in volcanic clouds. J. Geophys. Res. 79, 472–475 (1974).

    ADS  Article  Google Scholar 

  7. Tomas, R. J. et al. Electrical activity during the 2006 Mount St Augustine volcanic eruptions. Science 315, 1097 (2007).

    ADS  Article  Google Scholar 

  8. Palmer, K. N. Dust Explosions and Fires (Chapman & Hall, 1973).

    Google Scholar 

  9. Eden, H. F. & Vonnegut, B. Electrical breakdown caused by dust motion in low-pressure atmospheres: Considerations for Mars. Science 180, 962–963 (1973).

    ADS  Article  Google Scholar 

  10. Forward, K. M., Lacks, D. J. & Sankaran, R. M. Particle-size dependent bipolar charging of Martian regolith simulant. Geophys. Res. Lett. 36, L13201 (2009).

    ADS  Article  Google Scholar 

  11. Mills, A. A. Dust clouds and frictional generation of glow discharges on Mars. Nature 268, 614 (1977).

    ADS  Article  Google Scholar 

  12. Lowell, J. & Truscott, W. S. Triboelectrification of identical insulators. J. Phys. D 19, 1273–1280 (1986).

    ADS  Article  Google Scholar 

  13. Shaw, P. E. Electrical separation between identical solid surfaces. Proc. Phys. Soc. 39, 449–452 (1927).

    ADS  Article  Google Scholar 

  14. Lacks, D. J. & Levandovsky, A. Effect of particle size distribution on the polarity of triboelectric charging in granular insulator systems. J. Electrostatics 65, 107–112 (2007).

    Article  Google Scholar 

  15. Kok, J. F. & Lacks, D. J. Electrification of granular systems of identical insulators. Phys. Rev. E 79, 051304 (2009).

    ADS  Article  Google Scholar 

  16. Wu, Y., Castle, G. S. P., Inculet, I., Petigny, S. & Swei, G. Induction charge on freely levitating particles. Powder Technol. 135–136, 59–64 (2003).

    Article  Google Scholar 

  17. Whitesides, G. M. & McCarty, L. S. Electrostatic charging due to separation of ions at interfaces: Contact electrification of ionic electrets. Angew. Chem. Int. Ed. 47, 2188–2207 (2008).

    Article  Google Scholar 

  18. Ristenpart, W. D., Bird, J. C., Belmonte, A., Dollar, F. & Stone, H. A. Non-coalescence of oppositely charged drops. Nature 461, 377–380 (2009).

    ADS  Article  Google Scholar 

  19. Harper, W. R. Contact and Frictional Electrification (Clarendon, 1967).

    Google Scholar 

  20. Shinbrot, T., Komatsu, T. S. & Zhao, Q. Spontaneous tribocharging of similar materials. Europhys. Lett. 83, 24004 1-4 (2008).

    Article  Google Scholar 

  21. Baddeley, P. F. H. Whirlwinds and Dust-Storms of India 11 (Bell & Daldy, 1860).

    Google Scholar 

  22. Zheng, X. J., He, L. H. & Zhou, Y. H. Theoretical model of the electric field produced by charged particles in windblown sand flux. J. Geophys. Res. 109, D15208 1-9 (2004).

    ADS  Google Scholar 

  23. Rasmussen, K. R., Kok, J. F. & Merrison, J. P. Enhancement in wind-driven sand transport by electric fields. Planet. Space Sci. 57, 804–808 (2009).

    ADS  Article  Google Scholar 

  24. Latham, J. The electrification of snowstorms and sandstorms. Q. J. R. Meteorol. Soc. 90, 91–95 (1964).

    ADS  Article  Google Scholar 

  25. Ireland, P. M. The role of changing contact in sliding triboelectrification. J. Phys. D 41, 025305 1-11 (2008).

    Article  Google Scholar 

  26. Maxwell, J. C. On the dynamical theory of gases. Phil. Trans. R. Soc. Lond. 157, 49–88 (1867).

    ADS  Article  Google Scholar 

  27. Anderson, R. S. & Haff, P. K. Simulation of Eolian saltation. Science 241, 820–823 (1988).

    ADS  Article  Google Scholar 

  28. Walton, O. R. & Braun, R. L. Viscosity, granular-temperature, and stress calculations for shearing assemblies of inelastic, frictional disks. J. Rheology 30, 949–980 (1986).

    ADS  Article  Google Scholar 

  29. Shinbrot, T., LaMarche, K. & Glasser, B. J. Triboelectrification and razorbacks: Geophysical patterns produced in dry grains. Phys. Rev. Lett. 96, 178002 1-4 (2006).

    ADS  Article  Google Scholar 

Download references


We thank E. Strombom for her dedicated experimental work, and we thank the National Science Foundation, Division of Chemical and Transport Systems and the Eidgenössische Technische Hochschule, project ETH-10 09-2 for financial support.

Author information

Authors and Affiliations



T.P. carried out the simulations. H.J.H. directed the simulations and provided geophysical expertise. T.S. conceived the project, constructed the experiment, carried out the analysis and prepared the initial manuscript. All authors discussed the results and implications and commented on the manuscript at all stages.

Corresponding author

Correspondence to T. Shinbrot.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 173 kb)

Supplementary Movie

Supplementary Movie 1 (MOV 3901 kb)

Supplementary Movie

Supplementary Movie 2 (MOV 3773 kb)

Supplementary Movie

Supplementary Movie 3 (MOV 5478 kb)

Supplementary Movie

Supplementary Movie 4 (MOV 3746 kb)

Supplementary Movie

Supplementary Movie 5 (MOV 4897 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Pähtz, T., Herrmann, H. & Shinbrot, T. Why do particle clouds generate electric charges?. Nature Phys 6, 364–368 (2010).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing