Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A Rydberg quantum simulator

Abstract

A universal quantum simulator is a controlled quantum device that reproduces the dynamics of any other many-particle quantum system with short-range interactions. This dynamics can refer to both coherent Hamiltonian and dissipative open-system evolution. Here we propose that laser-excited Rydberg atoms in large-spacing optical or magnetic lattices provide an efficient implementation of a universal quantum simulator for spin models involving n-body interactions, including such of higher order. This would allow the simulation of Hamiltonians of exotic spin models involving n-particle constraints, such as the Kitaev toric code, colour code and lattice gauge theories with spin-liquid phases. In addition, our approach provides the ingredients for dissipative preparation of entangled states based on engineering n-particle reservoir couplings. The basic building blocks of our architecture are efficient and high-fidelity n-qubit entangling gates using auxiliary Rydberg atoms, including a possible dissipative time step through optical pumping. This enables mimicking the time evolution of the system by a sequence of fast, parallel and high-fidelity n-particle coherent and dissipative Rydberg gates.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Set-up of the system.
Figure 2: Cooling of the toric code.
Figure 3: Single time step.
Figure 4: Lattice gauge theory.

References

  1. Gallagher, T. F. Rydberg Atoms (Cambridge Univ. Press, 1994).

    Book  Google Scholar 

  2. Tong, D. et al. Local blockade of Rydberg excitation in an ultracold gas. Phys. Rev. Lett. 93, 063001 (2004).

    ADS  Article  Google Scholar 

  3. Singer, K., Reetz-Lamour, M., Amthor, T., Marcassa, L. G. & Weidemüller, M. Suppression of excitation and spectral broadening induced by interactions in a cold gas of Rydberg atoms. Phys. Rev. Lett. 93, 163001 (2004).

    ADS  Article  Google Scholar 

  4. Cubel, T. et al. Coherent population transfer of ground-state atoms into Rydberg states. Phys. Rev. A 72, 023405 (2005).

    ADS  Article  Google Scholar 

  5. Vogt, T. et al. Dipole blockade at Förster resonances in high resolution laser excitation of Rydberg states of cesium atoms. Phys. Rev. Lett. 97, 083003 (2006).

    ADS  Article  Google Scholar 

  6. Mohapatra, A. K., Jackson, T. R. & Adams, C. S. Coherent optical detection of highly excited Rydberg states using electromagnetically induced transparency. Phys. Rev. Lett. 98, 113003 (2007).

    ADS  Article  Google Scholar 

  7. Heidemann, R. et al. Evidence for coherent collective Rydberg excitation in the strong blockade regime. Phys. Rev. Lett. 99, 163601 (2007).

    ADS  Article  Google Scholar 

  8. Nelson, K. D., Li, X. & Weiss, D. S. Imaging single atoms in a three-dimensional array. Nature Phys. 3, 556–560 (2007).

    ADS  Article  Google Scholar 

  9. Whitlock, S., Gerritsma, R., Fernholz, T. & Spreeuw, R. J. C. Two-dimensional array of microtraps with atomic shift register on a chip. New J. Phys. 11, 023021 (2009).

    ADS  Article  Google Scholar 

  10. Møller, D., Madsen, L. B. & Mølmer, K. Quantum gates and multiparticle entanglement by Rydberg excitation blockade and adiabatic passage. Phys. Rev. Lett. 100, 170504 (2008).

    ADS  Article  Google Scholar 

  11. Müller, M., Lesanovsky, I., Weimer, H., Büchler, H. P. & Zoller, P. Mesoscopic Rydberg gate based on electromagnetically induced transparency. Phys. Rev. Lett. 102, 170502 (2009).

    ADS  Article  Google Scholar 

  12. Gaëtan, A. et al. Observation of collective excitation of two individual atoms in the Rydberg blockade regime. Nature Phys. 5, 115–118 (2009).

    ADS  Article  Google Scholar 

  13. Urban, E. et al. Observation of Rydberg blockade between two atoms. Nature Phys. 5, 110–114 (2009).

    ADS  Article  Google Scholar 

  14. Breuer, H.-P. & Petruccione, F. The Theory of Open Quantum Systems (Oxford Univ. Press, 2002).

    MATH  Google Scholar 

  15. Feynman, R. P. Simulating physics with computers. Int. J. Theor. Phys. 21, 467–488 (1982).

    MathSciNet  Article  Google Scholar 

  16. Lloyd, S. Universal quantum simulators. Science 273, 1073–1078 (1996).

    ADS  MathSciNet  Article  Google Scholar 

  17. Kitaev, A. Y. Fault-tolerant quantum computation by anyons. Ann. Phys. 303, 2–30 (2003).

    ADS  MathSciNet  Article  Google Scholar 

  18. Diehl, S. et al. Quantum states and phases in driven open quantum systems with cold atoms. Nature Phys. 4, 878–883 (2008).

    ADS  Article  Google Scholar 

  19. Kraus, B. et al. Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008).

    ADS  Article  Google Scholar 

  20. Aguado, M., Brennen, G. K., Verstraete, F. & Cirac, J. I. Creation, manipulation, and detection of Abelian and non-Abelian anyons in optical lattices. Phys. Rev. Lett. 101, 260501 (2008).

    ADS  Article  Google Scholar 

  21. Bombin, H. & Martin-Delgado, M. A. Topological quantum distillation. Phys. Rev. Lett. 97, 180501 (2006).

    ADS  Article  Google Scholar 

  22. Kitaev, A. Y. Anyons in an exactly solved model and beyond. Ann. Phys. 321, 2–111 (2006).

    ADS  MathSciNet  Article  Google Scholar 

  23. Duan, L.-M., Demler, E. & Lukin, M. D. Controlling spin exchange interactions of ultracold atoms in optical lattices. Phys. Rev. Lett. 91, 090402 (2003).

    ADS  Article  Google Scholar 

  24. Jackeli, G. & Khaliullin, G. Mott insulators in the strong spin–orbit coupling limit: From Heisenberg to a quantum compass and Kitaev models. Phys. Rev. Lett. 102, 017205 (2009).

    ADS  Article  Google Scholar 

  25. Sørensen, A. & Mølmer, K. Spin–spin interaction and spin squeezing in an optical lattice. Phys. Rev. Lett. 83, 2274–2277 (1999).

    ADS  Article  Google Scholar 

  26. Bloch, I., Dalibard, J. & Zwerger, W. Many-body physics with ultracold gases. Rev. Mod. Phys. 80, 885–964 (2008).

    ADS  Article  Google Scholar 

  27. Vidal, J., Dusuel, S. & Schmidt, K. P. Low-energy effective theory of the toric code model in a parallel magnetic field. Phys. Rev. B 79, 033109 (2009).

    ADS  Article  Google Scholar 

  28. Fölling, S. et al. Spatial quantum noise interferometry in expanding ultracold atom clouds. Nature 434, 481–484 (2005).

    ADS  Article  Google Scholar 

  29. Altman, E., Demler, E. & Lukin, M. D. Probing many-body states of ultracold atoms via noise correlations. Phys. Rev. A 70, 013603 (2004).

    ADS  Article  Google Scholar 

  30. Kogut, J. B. An introduction to lattice gauge theory and spin systems. Rev. Mod. Phys. 51, 659–713 (1979).

    ADS  MathSciNet  Article  Google Scholar 

  31. Moessner, R. & Sondhi, S. L. Resonating valence bond phase in the triangular lattice quantum dimer model. Phys. Rev. Lett. 86, 1881–1884 (2001).

    ADS  Article  Google Scholar 

  32. Motrunich, O. & Senthil, T. Exotic order in simple models of bosonic systems. Phys. Rev. Lett. 89, 277004 (2002).

    ADS  Article  Google Scholar 

  33. Hermele, M., Fisher, M. P. A. & Balents, L. Pyrochlore photons: The U(1) spin liquid in a S=1/2 three-dimensional frustrated magnet. Phys. Rev. B 69, 064404 (2004).

    ADS  Article  Google Scholar 

  34. Levin, M. & Wen, X.-G. Colloquium: Photons and electrons as emergent phenomena. Rev. Mod. Phys. 77, 871–879 (2005).

    ADS  Article  Google Scholar 

  35. Rokhsar, D. & Kivelson, S. Superconductivity and the quantum hard-core dimer gas. Phys. Rev. Lett. 61, 2376–2379 (1988).

    ADS  Article  Google Scholar 

  36. Fleischhauer, M., Imamoglu, A. & Marangos, J. P. Electromagnetically induced transparency: Optics in coherent media. Rev. Mod. Phys. 77, 633–673 (2005).

    ADS  Article  Google Scholar 

  37. Stokes, K. D. et al. Precision position measurement of moving atoms using optical fields. Phys. Rev. Lett. 67, 1997–2000 (1991).

    ADS  Article  Google Scholar 

  38. Gorshkov, A. V., Jiang, L., Greiner, M., Zoller, P. & Lukin, M. D. Coherent quantum optical control with subwavelength resolution. Phys. Rev. Lett. 100, 093005 (2008).

    ADS  Article  Google Scholar 

  39. Li, W., Tanner, P. J. & Gallagher, T. F. Dipole–dipole excitation and ionization in an ultracold gas of Rydberg atoms. Phys. Rev. Lett. 94, 173001 (2005).

    ADS  Article  Google Scholar 

  40. Walker, T. G. & Saffman, M. Consequences of Zeeman degeneracy for the van der Waals blockade between Rydberg atoms. Phys. Rev. A 77, 032723 (2008).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Austrian Science Foundation (FWF), and by the Deutsche Forschungsgemeinschaft (DFG) through SFB/TRR 21.

Author information

Authors and Affiliations

Authors

Contributions

All five authors contributed equally to all parts of this work.

Corresponding author

Correspondence to Hendrik Weimer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Weimer, H., Müller, M., Lesanovsky, I. et al. A Rydberg quantum simulator. Nature Phys 6, 382–388 (2010). https://doi.org/10.1038/nphys1614

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys1614

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing