Abstract
A universal quantum simulator is a controlled quantum device that reproduces the dynamics of any other many-particle quantum system with short-range interactions. This dynamics can refer to both coherent Hamiltonian and dissipative open-system evolution. Here we propose that laser-excited Rydberg atoms in large-spacing optical or magnetic lattices provide an efficient implementation of a universal quantum simulator for spin models involving n-body interactions, including such of higher order. This would allow the simulation of Hamiltonians of exotic spin models involving n-particle constraints, such as the Kitaev toric code, colour code and lattice gauge theories with spin-liquid phases. In addition, our approach provides the ingredients for dissipative preparation of entangled states based on engineering n-particle reservoir couplings. The basic building blocks of our architecture are efficient and high-fidelity n-qubit entangling gates using auxiliary Rydberg atoms, including a possible dissipative time step through optical pumping. This enables mimicking the time evolution of the system by a sequence of fast, parallel and high-fidelity n-particle coherent and dissipative Rydberg gates.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Many-body quantum chaos in stroboscopically-driven cold atoms
Communications Physics Open Access 10 June 2023
-
Scalable quantum processors empowered by the Fermi scattering of Rydberg electrons
Communications Physics Open Access 31 March 2023
-
Approaching Heisenberg-scalable thermometry with built-in robustness against noise
npj Quantum Information Open Access 07 July 2022
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout




References
Gallagher, T. F. Rydberg Atoms (Cambridge Univ. Press, 1994).
Tong, D. et al. Local blockade of Rydberg excitation in an ultracold gas. Phys. Rev. Lett. 93, 063001 (2004).
Singer, K., Reetz-Lamour, M., Amthor, T., Marcassa, L. G. & Weidemüller, M. Suppression of excitation and spectral broadening induced by interactions in a cold gas of Rydberg atoms. Phys. Rev. Lett. 93, 163001 (2004).
Cubel, T. et al. Coherent population transfer of ground-state atoms into Rydberg states. Phys. Rev. A 72, 023405 (2005).
Vogt, T. et al. Dipole blockade at Förster resonances in high resolution laser excitation of Rydberg states of cesium atoms. Phys. Rev. Lett. 97, 083003 (2006).
Mohapatra, A. K., Jackson, T. R. & Adams, C. S. Coherent optical detection of highly excited Rydberg states using electromagnetically induced transparency. Phys. Rev. Lett. 98, 113003 (2007).
Heidemann, R. et al. Evidence for coherent collective Rydberg excitation in the strong blockade regime. Phys. Rev. Lett. 99, 163601 (2007).
Nelson, K. D., Li, X. & Weiss, D. S. Imaging single atoms in a three-dimensional array. Nature Phys. 3, 556–560 (2007).
Whitlock, S., Gerritsma, R., Fernholz, T. & Spreeuw, R. J. C. Two-dimensional array of microtraps with atomic shift register on a chip. New J. Phys. 11, 023021 (2009).
Møller, D., Madsen, L. B. & Mølmer, K. Quantum gates and multiparticle entanglement by Rydberg excitation blockade and adiabatic passage. Phys. Rev. Lett. 100, 170504 (2008).
Müller, M., Lesanovsky, I., Weimer, H., Büchler, H. P. & Zoller, P. Mesoscopic Rydberg gate based on electromagnetically induced transparency. Phys. Rev. Lett. 102, 170502 (2009).
Gaëtan, A. et al. Observation of collective excitation of two individual atoms in the Rydberg blockade regime. Nature Phys. 5, 115–118 (2009).
Urban, E. et al. Observation of Rydberg blockade between two atoms. Nature Phys. 5, 110–114 (2009).
Breuer, H.-P. & Petruccione, F. The Theory of Open Quantum Systems (Oxford Univ. Press, 2002).
Feynman, R. P. Simulating physics with computers. Int. J. Theor. Phys. 21, 467–488 (1982).
Lloyd, S. Universal quantum simulators. Science 273, 1073–1078 (1996).
Kitaev, A. Y. Fault-tolerant quantum computation by anyons. Ann. Phys. 303, 2–30 (2003).
Diehl, S. et al. Quantum states and phases in driven open quantum systems with cold atoms. Nature Phys. 4, 878–883 (2008).
Kraus, B. et al. Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008).
Aguado, M., Brennen, G. K., Verstraete, F. & Cirac, J. I. Creation, manipulation, and detection of Abelian and non-Abelian anyons in optical lattices. Phys. Rev. Lett. 101, 260501 (2008).
Bombin, H. & Martin-Delgado, M. A. Topological quantum distillation. Phys. Rev. Lett. 97, 180501 (2006).
Kitaev, A. Y. Anyons in an exactly solved model and beyond. Ann. Phys. 321, 2–111 (2006).
Duan, L.-M., Demler, E. & Lukin, M. D. Controlling spin exchange interactions of ultracold atoms in optical lattices. Phys. Rev. Lett. 91, 090402 (2003).
Jackeli, G. & Khaliullin, G. Mott insulators in the strong spin–orbit coupling limit: From Heisenberg to a quantum compass and Kitaev models. Phys. Rev. Lett. 102, 017205 (2009).
Sørensen, A. & Mølmer, K. Spin–spin interaction and spin squeezing in an optical lattice. Phys. Rev. Lett. 83, 2274–2277 (1999).
Bloch, I., Dalibard, J. & Zwerger, W. Many-body physics with ultracold gases. Rev. Mod. Phys. 80, 885–964 (2008).
Vidal, J., Dusuel, S. & Schmidt, K. P. Low-energy effective theory of the toric code model in a parallel magnetic field. Phys. Rev. B 79, 033109 (2009).
Fölling, S. et al. Spatial quantum noise interferometry in expanding ultracold atom clouds. Nature 434, 481–484 (2005).
Altman, E., Demler, E. & Lukin, M. D. Probing many-body states of ultracold atoms via noise correlations. Phys. Rev. A 70, 013603 (2004).
Kogut, J. B. An introduction to lattice gauge theory and spin systems. Rev. Mod. Phys. 51, 659–713 (1979).
Moessner, R. & Sondhi, S. L. Resonating valence bond phase in the triangular lattice quantum dimer model. Phys. Rev. Lett. 86, 1881–1884 (2001).
Motrunich, O. & Senthil, T. Exotic order in simple models of bosonic systems. Phys. Rev. Lett. 89, 277004 (2002).
Hermele, M., Fisher, M. P. A. & Balents, L. Pyrochlore photons: The U(1) spin liquid in a S=1/2 three-dimensional frustrated magnet. Phys. Rev. B 69, 064404 (2004).
Levin, M. & Wen, X.-G. Colloquium: Photons and electrons as emergent phenomena. Rev. Mod. Phys. 77, 871–879 (2005).
Rokhsar, D. & Kivelson, S. Superconductivity and the quantum hard-core dimer gas. Phys. Rev. Lett. 61, 2376–2379 (1988).
Fleischhauer, M., Imamoglu, A. & Marangos, J. P. Electromagnetically induced transparency: Optics in coherent media. Rev. Mod. Phys. 77, 633–673 (2005).
Stokes, K. D. et al. Precision position measurement of moving atoms using optical fields. Phys. Rev. Lett. 67, 1997–2000 (1991).
Gorshkov, A. V., Jiang, L., Greiner, M., Zoller, P. & Lukin, M. D. Coherent quantum optical control with subwavelength resolution. Phys. Rev. Lett. 100, 093005 (2008).
Li, W., Tanner, P. J. & Gallagher, T. F. Dipole–dipole excitation and ionization in an ultracold gas of Rydberg atoms. Phys. Rev. Lett. 94, 173001 (2005).
Walker, T. G. & Saffman, M. Consequences of Zeeman degeneracy for the van der Waals blockade between Rydberg atoms. Phys. Rev. A 77, 032723 (2008).
Acknowledgements
This work was supported by the Austrian Science Foundation (FWF), and by the Deutsche Forschungsgemeinschaft (DFG) through SFB/TRR 21.
Author information
Authors and Affiliations
Contributions
All five authors contributed equally to all parts of this work.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Rights and permissions
About this article
Cite this article
Weimer, H., Müller, M., Lesanovsky, I. et al. A Rydberg quantum simulator. Nature Phys 6, 382–388 (2010). https://doi.org/10.1038/nphys1614
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nphys1614
This article is cited by
-
Scalable quantum processors empowered by the Fermi scattering of Rydberg electrons
Communications Physics (2023)
-
Many-body quantum chaos in stroboscopically-driven cold atoms
Communications Physics (2023)
-
Strain and pseudo-magnetic fields in optical lattices from density-assisted tunneling
Communications Physics (2022)
-
Rydberg exciton–polaritons in a Cu2O microcavity
Nature Materials (2022)
-
Approaching Heisenberg-scalable thermometry with built-in robustness against noise
npj Quantum Information (2022)