Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Mott physics and band topology in materials with strong spin–orbit interaction


Recent theory and experiment have revealed that strong spin–orbit coupling can have marked qualitative effects on the band structure of weakly interacting solids, leading to a distinct phase of matter, the topological band insulator. We show that spin–orbit interaction also has quantitative and qualitative effects on the correlation-driven Mott insulator transition. Taking Ir-based pyrochlores as a specific example, we predict that for weak electron–electron interaction Ir electrons are in metallic and topological band insulator phases at weak and strong spin–orbit interaction, respectively. We show that by increasing the electron–electron interaction strength, the effects of spin–orbit coupling are enhanced. With increasing interactions, the topological band insulator is transformed into a ‘topological Mott insulator’ phase having gapless surface spin-only excitations. The proposed phase diagram also includes a region of gapless Mott insulator with a spinon Fermi surface, and a magnetically ordered state at still larger electron–electron interaction.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Phase diagram based on the slave-rotor approximation and strong coupling limit, as a function of Hubbard repulsion U and spin–orbit coupling λ (relative to hopping t).
Figure 2: Pyrochlore lattice and electron hopping.
Figure 3: Electronic band structure of Ir 5d electrons on the pyrochlore lattice at large spin–orbit coupling, .
Figure 4: Surface-state spectrum.


  1. Kane, C. & Mele, E. Z(2) topological order and the quantum spin Hall effect. Phys. Rev. Lett. 95, 146802 (2005).

    ADS  Article  Google Scholar 

  2. Bernevig, B. A., Hughes, T. L. & Zhang, S.-C. Quantum spin Hall effect and topological phase transition in HgTe quantum wells. Science 314, 1757–1761 (2006).

    ADS  Article  Google Scholar 

  3. Moore, J. E. & Balents, L. Topological invariants of time-reversal-invariant band structures. Phys. Rev. B 75, 121306 (2007).

    ADS  Article  Google Scholar 

  4. Fu, L., Kane, C. L. & Mele, E. J. Topological insulators in three dimensions. Phys. Rev. Lett. 98, 106803 (2007).

    ADS  Article  Google Scholar 

  5. Konig, M. et al. Quantum spin Hall insulator state in HgTe quantum wells. Science 318, 766–770 (2007).

    ADS  Article  Google Scholar 

  6. Hsieh, D. et al. A topological Dirac insulator in a quantum spin Hall phase. Nature 452, 970–974 (2008).

    ADS  Article  Google Scholar 

  7. Chen, G. & Balents, L. Spin–orbit effects in Na4Ir3O8: A hyper-kagome lattice antiferromagnet. Phys. Rev. B 78, 094403 (2008).

    ADS  Article  Google Scholar 

  8. Tovar, M., Raman, K. S. & Shtengel, K. Dzyaloshinskii-Moriya interactions in valence-bond systems. Phys. Rev. B 79, 024405 (2009).

    ADS  Article  Google Scholar 

  9. Chen, G., Balents, L. & Schnyder, A. P. Spin-orbital singlet and quantum critical point on the diamond lattice: FeSc2S4 . Phys. Rev. Lett. 102, 096406 (2009).

    ADS  Article  Google Scholar 

  10. Kim, B. J. et al. Phase-sensitive observation of a spin-orbital Mott state in Sr2IrO4 . Science 323, 1329–1332 (2009).

    ADS  Article  Google Scholar 

  11. Shitade, A. et al. Quantum spin Hall effect in a transition metal oxide Na2IrO3 . Phys. Rev. Lett. 102, 256403 (2009).

    ADS  Article  Google Scholar 

  12. Matsuhira, K. et al. Metal–insulator transition in pyrochlore iridates Ln2Ir2O7 (Ln=Nd, Sm, and Eu). J. Phys. Soc. Jpn 76, 043706 (2007).

    ADS  Article  Google Scholar 

  13. Okamoto, Y., Nohara, M., Aruga-Katori, H. & Takagi, H. Spin-liquid state in the S=1/2 hyperkagome antiferromagnet Na4Ir3O8 . Phys. Rev. Lett. 99, 137207 (2007).

    ADS  Article  Google Scholar 

  14. Fukazawa, H. & Maeno, Y. Filling control of the pyrochlore oxide Y2Ir2O7 . J. Phys. Soc. Jpn 71, 2578–2579 (2002).

    ADS  Article  Google Scholar 

  15. Nakatsuji, S. et al. Metallic spin-liquid behavior of the geometrically frustrated Kondo lattice Pr2Ir2O7 . Phys. Rev. Lett. 96, 087204 (2006).

    ADS  Article  Google Scholar 

  16. Abragam, A. & Bleaney, B. Electron Paramagnetic Resonance of Transition Ions (Clarendon, 1975).

    Google Scholar 

  17. Jin, H., Kim, H., Jeong, H., Kim, C. H. & Yu, J. Mott insulating ground state and its proximity to spin–orbit insulators in Na2IrO3. Preprint at <> (2009).

  18. Slater, J. & Koster, G. Simplified LCAO method for the periodic potential problem. Phys. Rev. 94, 1498–1524 (1954).

    ADS  Article  Google Scholar 

  19. Fu, L. & Kane, C. Topological insulators with inversion symmetry. Phys. Rev. B 76, 045302 (2007).

    ADS  Article  Google Scholar 

  20. Elhajal, M., Canals, B., Sunyer, R. & Lacroix, C. Ordering in the pyrochlore antiferromagnet due to Dzyaloshinsky-Moriya interactions. Phys. Rev. B 71, 094420 (2005).

    ADS  Article  Google Scholar 

  21. Florens, S. & Georges, A. Slave-rotor mean-field theories of strongly correlated systems and the Mott transition in finite dimensions. Phys. Rev. B 70, 035114 (2004).

    ADS  Article  Google Scholar 

  22. Mizusaki, T. & Imada, M. Gapless quantum spin liquid, stripe, and antiferromagnetic phases in frustrated Hubbard models in two dimensions. Phys. Rev. B 74, 014421 (2006).

    ADS  Article  Google Scholar 

  23. Motrunich, O. Variational study of triangular lattice spin-1/2 model with ring exchanges and spin liquid state in κ-(ET)2Cu2(CN)3 . Phys. Rev. B 72, 045105 (2005).

    ADS  Article  Google Scholar 

  24. Sahebsara, P. & Sénéchal, D. Hubbard model on the triangular lattice: Spiral order and spin liquid. Phys. Rev. Lett. 100, 136402 (2008).

    ADS  Article  Google Scholar 

  25. Raghu, S., Qi, X.-L., Honerkamp, C. & Zhang, S.-C. Topological Mott insulators. Phys. Rev. Lett. 100, 156401 (2008).

    ADS  Article  Google Scholar 

  26. Young, M. W., Lee, S.-S. & Kallin, C. Fractionalized quantum spin Hall effect. Phys. Rev. B 78, 125316 (2008).

    ADS  Article  Google Scholar 

  27. Qi, X., Li, R., Zang, J. & Zhang, S. Inducing a magnetic monopole with topological surface states. Science 323, 1184–1187 (2009).

    ADS  MathSciNet  Article  Google Scholar 

  28. Qi, X., Hughes, T. & Zhang, S. Topological field theory of time-reversal invariant insulators. Phys. Rev. B 78, 195424 (2008).

    ADS  Article  Google Scholar 

  29. Essin, A., Moore, J. & Vanderbilt, D. Magnetoelectric polarizability and axion electrodynamics in crystalline insulators. Phys. Rev. Lett. 102, 146805 (2009).

    ADS  Article  Google Scholar 

  30. Wilczek, F. Two applications of axion electrodynamics. Phys. Rev. Lett. 58, 1799–1802 (1987).

    ADS  Article  Google Scholar 

  31. Podolsky, D., Paramekanti, A., Kim, Y. B. & Senthil, T. Mott transition between a spin-liquid insulator and a metal in three dimensions. Phys. Rev. Lett. 102, 186401 (2009).

    ADS  Article  Google Scholar 

  32. Ioffe, L. B. & Larkin, A. I. Gapless fermions and gauge fields in dielectrics. Phys. Rev. B 39, 8988–8999 (1989).

    ADS  Article  Google Scholar 

  33. Yamashita, S. et al. Thermodynamic properties of a spin-1/2 spin-liquid state in a κ-type organic salt. Nature Phys. 4, 459–462 (2008).

    ADS  Article  Google Scholar 

  34. Lawler, M. J., Paramekanti, A., Kim, Y. B. & Balents, L. Gapless spin liquids on the three-dimensional hyperkagome lattice of Na4Ir3O8 . Phys. Rev. Lett. 101, 197202 (2008).

    ADS  Article  Google Scholar 

  35. Zhou, Y., Lee, P. A., Ng, T.-K. & Zhang, F.-C. Na4Ir3O8 as a 3D spin liquid with fermionic spinons. Phys. Rev. Lett. 101, 197201 (2008).

    ADS  Article  Google Scholar 

  36. Senthil, T. Theory of a continuous Mott transition in two dimensions. Phys. Rev. B 78, 045109 (2008).

    ADS  Article  Google Scholar 

  37. Kyung, B. & Tremblay, A.-M. S. Mott transition, antiferromagnetism, and d-wave superconductivity in two-dimensional organic conductors. Phys. Rev. Lett. 97, 046402 (2006).

    ADS  Article  Google Scholar 

  38. Morita, H., Watanabe, S. & Imada, M. Nonmagnetic insulating states near the Mott transitions on lattices with geometrical frustration and implications for κ-(ET)2Cu2(CN)3 . J. Phys. Soc. Jpn 71, 2109–2112 (2002).

    ADS  Article  Google Scholar 

  39. Lee, H. & Monien, H. Mott transition in the Hubbard model on the hyper-kagome lattice. Preprint at <> (2009).

  40. Yoshikawa, T. & Ogata, M. Role of frustration and dimensionality in the Hubbard model on the stacked square lattice: Variational cluster approach. Phys. Rev. B 79, 144429 (2009).

    ADS  Article  Google Scholar 

  41. Halperin, B. I. & Rice, T. M. Possible anomalies at a semimetal–semiconductor transition. Rev. Mod. Phys. 40, 755–766 (1968).

    ADS  Article  Google Scholar 

  42. Halperin, B. I., Lubensky, T. C. & Ma, S.-K. First-order phase transitions in superconductors and smectic-A liquid crystals. Phys. Rev. Lett. 32, 292–295 (1974).

    ADS  Article  Google Scholar 

Download references


This work was supported by the DOE through Basic Energy Sciences grants DE-FG02-08ER46524 (L.B.) and DEFG02-07ER46452 (D.P.). The research facilities at the KITP were supported by the National Science Foundation grant NSF PHY-0551164.

Author information

Authors and Affiliations



All authors contributed equally to this work.

Corresponding author

Correspondence to Dmytro Pesin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 243 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Pesin, D., Balents, L. Mott physics and band topology in materials with strong spin–orbit interaction. Nature Phys 6, 376–381 (2010).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing