Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Exploring laser-wakefield-accelerator regimes for near-term lasers using particle-in-cell simulation in Lorentz-boosted frames

Abstract

Plasma-based acceleration offers compact accelerators with potential applications for high-energy physics and photon sources. The past five years have seen an explosion of experimental results with monoenergetic electron beams up to 1 GeV on a centimetre-scale, using plasma waves driven by intense lasers. The next decade will see tremendous increases in laser power and energy, permitting beam energies beyond 10 GeV. Leveraging on the Lorentz transformations to bring the laser and plasma spatial scales together, we have reduced the computational time for modelling laser–plasma accelerators by several orders of magnitude, including all the relevant physics. This scheme enables the first one-to-one particle-in-cell simulations of the next generation of accelerators at the energy frontier. Our results demonstrate that, for a given laser energy, choices in laser and plasma parameters strongly affect the output electron beam energy, charge and quality, and that all of these parameters can be optimized.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Simulation results for a LWFA in the bubble regime with a 250 J laser in the laboratory frame.
Figure 2: Simulation results for a LWFA in the self-guiding/self-injection blowout regime of a 250 J laser.
Figure 3: Simulation results for a LWFA in the external-guiding/external-injection blowout regime of a 250 J laser.
Figure 4: Comparison of laser/plasma matching conditions for the three regimes studied.

Similar content being viewed by others

References

  1. Tajima, T. & Dawson, J. M. Laser electron accelerator. Phys. Rev. Lett. 43, 267–270 (1979).

    Article  ADS  Google Scholar 

  2. Geddes, C. G. R. et al. High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding. Nature 431, 538–541 (2004).

    Article  ADS  Google Scholar 

  3. Faure, J. et al. A laser–plasma accelerator producing monoenergetic electron beams. Nature 431, 541–544 (2004).

    Article  ADS  Google Scholar 

  4. Mangles, S. P. D. et al. Monoenergetic beams of relativistic electrons from intense laser–plasma interactions. Nature 431, 535–538 (2004).

    Article  ADS  Google Scholar 

  5. Leemans, W. P. GeV electron beams from a centimetre-scale accelerator. Nature Phys. 2, 696–699 (2006).

    Article  ADS  Google Scholar 

  6. Rosenzweig, J. B., Breizman, B., Katsouleas, T. & Su, J. J. Acceleration and focusing of electrons in two-dimensional nonlinear plasma wake fields. Phys. Rev. A 44, R6189–R6192 (1991).

    Article  ADS  Google Scholar 

  7. Lu, W. et al. Nonlinear theory for relativistic plasma wakefields in the blowout regime. Phys. Rev. Lett. 96, 165002 (2006).

    Article  ADS  Google Scholar 

  8. Pukhov, A. & Meyer-ter-Vehn, J. Laser wake field acceleration: The highly non-linear broken-wave regime. Appl. Phys. B 74, 355–361 (2002).

    Article  ADS  Google Scholar 

  9. Gordienko, S. & Pukhov, A. Scalings for ultrarelativistic laser plasmas and quasimonoenergetic electrons. Phys. Plasmas 12, 043109 (2005).

    Article  ADS  Google Scholar 

  10. Lu, W. et al. Generating multi-GeV electron bunches using single laser wakefield acceleration in a 3D nonlinear regime. Phys. Rev. Spec. Top. 10, 061301 (2007).

    ADS  Google Scholar 

  11. Tzoufras, M. et al. Beam loading in the nonlinear regime of plasma-based acceleration. Phys. Rev. Lett. 101, 145002 (2008).

    Article  ADS  Google Scholar 

  12. Norreys, P. A. Laser-driven particle acceleration. Nature Photon. 3, 423–425 (2009).

    Article  ADS  Google Scholar 

  13. <http://www.ph.utexas.edu/~ultasers/tpp.php>.

  14. Tsung, F. et al. Near-GeV-energy laser-wakefield acceleration of self-injected electrons in a centimetre-scale plasma channel. Phys. Rev. Lett. 93, 185002 (2004).

    Article  ADS  Google Scholar 

  15. Mangles, S. et al. On the stability of laser wakefield electron accelerators in the monoenergetic regime. Phys. Plasmas 14, 056702 (2007).

    Article  ADS  Google Scholar 

  16. Esarey, E., Hubbard, R. F., Leemans, W. P., Ting, A. & Sprangle, P. Electron injection into plasma wakefields by colliding laser pulses. Phys. Rev. Lett. 79, 2682–2685 (1997).

    Article  ADS  Google Scholar 

  17. Faure, J. et al. Controlled injection and acceleration of electrons in plasma wakefields by colliding laser pulses. Nature 444, 737–739 (2006).

    Article  ADS  Google Scholar 

  18. Bulanov, S., Naumova, N., Pegoraro, F. & Sakai, J. Particle injection into the wave acceleration phase due to nonlinear wake wave breaking. Phys. Rev. E 58, R5257–R5260 (1998).

    Article  ADS  Google Scholar 

  19. Geddes, C. G. R. et al. Plasma-density-gradient injection of low absolute-momentum-spread electron bunches. Phys. Rev. Lett. 100, 215004 (2008).

    Article  ADS  Google Scholar 

  20. Vay, J.-L. Noninvariance of space- and time-scale ranges under a Lorentz transformation and the implications for the study of relativistic interactions. Phys. Rev. Lett. 98, 130405 (2007).

    Article  ADS  Google Scholar 

  21. Schlenvoigt, H.-P. et al. A compact synchrotron radiation source driven by a laser–plasma wakefield accelerator. Nature Phys. 4, 130–133 (2008).

    Article  ADS  Google Scholar 

  22. Huang, C. et al. QuickPIC: A highly efficient PIC code for modelling wakefield acceleration in plasmas. J. Comput. Phys. 217, 658–679 (2006).

    Article  ADS  Google Scholar 

  23. Tzoufras, M. Generation of Multi-Giga-Electron-Volt Monoenergetic Electron Beams via Laser Wakefield Acceleration PhD thesis, Univ. California (2008).

  24. Fonseca, R. A. et al. in OSIRIS: A 3D, Fully Relativistic Particle in Cell Code for Modeling Plasma Based Accelerators (eds Sloot, P. M. A. et al.) 342–351 (ICCS 2002, LNCS 2331, 2002).

  25. Mangles, S. et al. Laser-wakefield acceleration of monoenergetic electron beams in the first plasma-wave period. Phys. Rev. Lett. 96, 215001 (2006).

    Article  ADS  Google Scholar 

  26. Martins, S. F. et al. Numerical simulations of laser wakefield accelerators in optimal Lorentz frames. Comput. Phys. Commun. (in the press).

  27. Martins, S. F. et al. Third US–Japan Workshop on Ultra-Intense Laser Plasma Interactions, November 23–24, Austin, Texas (2008).

    Google Scholar 

  28. Greenwood, A. D. et al. On the elimination of numerical Cerenkov radiation in PIC simulations. J. Comput. Phys. 201, 665–684 (2004).

    Article  ADS  Google Scholar 

  29. Esirkepov, T. Exact charge conservation scheme for particle-in-cell simulation with an arbitrary form-factor. Comput. Phys. Commun. 135, 144–153 (2001).

    Article  ADS  Google Scholar 

  30. Vay, J.-L. Simulation of beams or plasmas crossing at relativistic velocity. Phys. Plasmas 15, 056701 (2008).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by Fundação Calouste Gulbenkian, by Fundação para a Ciência e a Tecnologia, under grants PTDC/FIS/66823/2006 and SFRH/BD/35749/2007 (Portugal), Laserlab-Europe/LAPTECH, EC FP7 Contract No. 228334, by the US Department of Energy (DOE) under grant numbers DE-FC02-07ER41500, DE-FG02-92ER40727 and DE-FG52-09NA29552, by the NSF under grant numbers PHY-0904039 and PHY 0936266 and by the University of California Lab Research Program. S.F.M. and L.O.S. would like to thank KITP, where a part of this research was concluded, partially supported by the National Science Foundation under Grant number PHY05-51164. We thank the DEISA Consortium (www.deisa.eu), co-funded through the EU FP6 project RI-031513 and the FP7 project RI-222919, for support within the DEISA Extreme Computing Initiative. The simulations presented here were produced using IST Cluster (IST/Portugal), Dawson cluster (UCLA), Jügene (Jülich, Germany) and NERSC supercomputers.

Author information

Authors and Affiliations

Authors

Contributions

S.F.M., code development, simulations, data analysis and manuscript preparation; R.A.F., code development; W.L., data analysis; W.B.M. and L.O.S., result analysis and manuscript writing.

Corresponding author

Correspondence to L. O. Silva.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martins, S., Fonseca, R., Lu, W. et al. Exploring laser-wakefield-accelerator regimes for near-term lasers using particle-in-cell simulation in Lorentz-boosted frames. Nature Phys 6, 311–316 (2010). https://doi.org/10.1038/nphys1538

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys1538

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing