Abstract
Fermionic alkaline-earth atoms have unique properties that make them attractive candidates for the realization of atomic clocks and degenerate quantum gases. At the same time, they are attracting considerable theoretical attention in the context of quantum information processing. Here we demonstrate that when such atoms are loaded in optical lattices, they can be used as quantum simulators of unique many-body phenomena. In particular, we show that the decoupling of the nuclear spin from the electronic angular momentum can be used to implement many-body systems with an unprecedented degree of symmetry, characterized by the S U(N) group with N as large as 10. Moreover, the interplay of the nuclear spin with the electronic degree of freedom provided by a stable optically excited state should enable the study of physics governed by the spin–orbital interaction. Such systems may provide valuable insights into the physics of strongly correlated transition-metal oxides, heavy-fermion materials and spin-liquid phases.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Many-body correlations in one-dimensional optical lattices with alkaline-earth(-like) atoms
Scientific Reports Open Access 17 June 2023
-
Probe for bound states of SU(3) fermions and colour deconfinement
Communications Physics Open Access 05 June 2023
-
Flavour-selective localization in interacting lattice fermions
Nature Physics Open Access 22 September 2022
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout





References
Boyd, M. M. et al. Nuclear spin effects in optical lattice clocks. Phys. Rev. A 76, 022510 (2007).
Campbell, G. K. et al. Probing interactions between ultracold fermions. Science 324, 360–363 (2009).
Lemke, N. D. et al. Spin-1/2 optical lattice clock. Phys. Rev. Lett. 103, 063001 (2009).
Fukuhara, T., Takasu, Y., Kumakura, M. & Takahashi, Y. Degenerate fermi gases of ytterbium. Phys. Rev. Lett. 98, 030401 (2007).
Reichenbach, I. & Deutsch, I. H. Sideband cooling while preserving coherences in the nuclear spin state in group-II-like atoms. Phys. Rev. Lett. 99, 123001 (2007).
Hayes, D., Julienne, P. S. & Deutsch, I. H. Quantum logic via the exchange blockade in ultracold collisions. Phys. Rev. Lett. 98, 070501 (2007).
Daley, A. J., Boyd, M. M., Ye, J. & Zoller, P. Quantum computing with alkaline-earth-metal atoms. Phys. Rev. Lett. 101, 170504 (2008).
Gorshkov, A. V. et al. Alkaline-earth-metal atoms as few-qubit quantum registers. Phys. Rev. Lett. 102, 110503 (2009).
Kugel, K. I. & Khomskii, D. I. Crystal structure and magnetic properties of substances with orbital degeneracy. Sov. Phys. JETP 37, 725–730 (1973).
Arovas, D. P. & Auerbach, A. Tetrahis(dimethylamino)ethylene-C60: Multicomponent superexchange and Mott ferromagnetism. Phys. Rev. B 52, 10114–10121 (1995).
Li, Y. Q., Ma, M., Shi, D. N. & Zhang, F. C. SU(4) theory for spin systems with orbital degeneracy. Phys. Rev. Lett. 81, 3527–3530 (1998).
Pati, S. K., Singh, R. R. P. & Khomskii, D. I. Alternating spin and orbital dimerization and spin-gap formation in coupled spin–orbital systems. Phys. Rev. Lett. 81, 5406–5409 (1998).
Tokura, Y. & Nagaosa, N. Orbital physics in transition-metal oxides. Science 288, 462–468 (2000).
Ruderman, M. A. & Kittel, C. Indirect exchange coupling of nuclear magnetic moments by conduction electrons. Phys. Rev. 96, 99–102 (1954).
Coqblin, B. & Schrieffer, J. R. Exchange interaction in alloys with cerium impurities. Phys. Rev. 185, 847–853 (1969).
Doniach, S. The Kondo lattice and weak antiferromagnetism. Physica B+C 91, 231–234 (1977).
Coleman, P. 1/N expansion for the Kondo lattice. Phys. Rev. B 28, 5255–5262 (1983).
Tsunetsugu, H., Sigrist, M. & Ueda, K. The ground-state phase diagram of the one-dimensional Kondo lattice model. Rev. Mod. Phys. 69, 809–863 (1997).
Assaad, F. F. Quantum Monte Carlo simulations of the half-filled two-dimensional Kondo lattice model. Phys. Rev. Lett. 83, 796–799 (1999).
Tokura, Y. (ed.) Colossal Magnetoresistive Oxides (Gordon and Breach, 2000).
Oshikawa, M. Topological approach to Luttinger’s theorem and the Fermi surface of a Kondo lattice. Phys. Rev. Lett. 84, 3370–3373 (2000).
Senthil, T., Sachdev, S. & Vojta, M. Fractionalized Fermi liquids. Phys. Rev. Lett. 90, 216403 (2003).
Duan, L.-M. Controlling ultracold atoms in multi-band optical lattices for simulation of Kondo physics. Europhys. Lett. 67, 721–727 (2004).
Paredes, B., Tejedor, C. & Cirac, J. I. Fermionic atoms in optical superlattices. Phys. Rev. A. 71, 063608 (2005).
Coleman, P. in Handbook of Magnetism and Advanced Magnetic Materials Vol. 1 (eds Kronmüller, H. & Parkin, S.) 95–148 (Wiley, 2007).
Gegenwart, P., Si, Q. & Steglich, F. Quantum criticality in heavy-fermion metals. Nature Phys. 4, 186–197 (2008).
Read, N. & Sachdev, S. Valence-bond and spin-Peierls ground states of low-dimensional quantum antiferromagnets. Phys. Rev. Lett. 62, 1694–1967 (1989).
Marston, J. B. & Affleck, I. Large-n limit of the Hubbard–Heisenberg model. Phys. Rev. B 39, 11538–11558 (1989).
Harada, K., Kawashima, N. & Troyer, M. Néel and spin-Peierls ground states of two-dimensional SU(N) quantum antiferromagnets. Phys. Rev. Lett. 90, 117203 (2003).
Assaad, F. F. Phase diagram of the half-filled two-dimensional SU(N) Hubbard–Heisenberg model: A quantum Monte Carlo study. Phys. Rev. B 71, 075103 (2005).
Paramekanti, A. & Marston, J. B. SU(N) quantum spin models: a variational wavefunction study. J. Phys. Condens. Matter 19, 125215 (2007).
Greiter, M. & Rachel, S. Valence bond solids for SU(n) spin chains: Exact models, spinon confinement, and the Haldane gap. Phys. Rev. B 75, 184441 (2007).
Xu, C. & Wu, C. Resonating plaquette phases in SU(4) Heisenberg antiferromagnet. Phys. Rev. B 77, 134449 (2008).
Hermele, M., Gurarie, V. & Rey, A. M. Mott insulators of ultracold fermionic alkaline earth atoms: Underconstrained magnetism and chiral spin liquid. Phys. Rev. Lett. 103, 135301 (2009).
Wu, C., Hu, J. P. & Zhang, S. C. Exact SO(5) symmetry in the spin-3/2 fermionic system. Phys. Rev. Lett. 91, 186402 (2003).
Honerkamp, C. & Hofstetter, W. Ultracold fermions and the SU(N) Hubbard model. Phys. Rev. Lett. 92, 170403 (2004).
Rapp, A., Hofstetter, W. & Zarand, G. Trionic phase of ultracold fermions in an optical lattice: A variational study. Phys. Rev. B 77, 144520 (2008).
Affleck, I., Arovas, D. P., Marston, J. B. & Rabson, D. A. SU(2n) quantum antiferromagnets with exact C-breaking ground states. Nucl. Phys. B 366, 467–506 (1991).
Trotzky, S. et al. Time-resolved observation and control of superexchange interactions with ultracold atoms in optical lattices. Science 319, 295–299 (2008).
Altman, E., Demler, E. & Lukin, M. D. Probing many-body states of ultracold atoms via noise correlations. Phys. Rev. A 70, 013603 (2004).
Hofstetter, W., Cirac, J. I., Zoller, P., Demler, E. & Lukin, M. D. High-temperature superfluidity of fermionic atoms in optical lattices. Phys. Rev. Lett. 89, 220407 (2002).
Werner, F., Parcollet, O., Georges, A. & Hassan, S. R. Interaction-induced adiabatic cooling and antiferromagnetism of cold fermions in optical lattices. Phys. Rev. Lett. 95, 056401 (2005).
Schneider, U. et al. Metallic and insulating phases of repulsively interacting fermions in a 3D optical lattice. Science 322, 1520–1525 (2008).
Fukuhara, T., Sugawa, S., Sugimoto, M., Taie, S. & Takahashi, Y. Mott insulator of ultracold alkaline-earth-metal-like atoms. Phys. Rev. A 79, 041604(R) (2009).
Ni, K. K. et al. A high phase-space-density gas of polar molecules. Science 322, 231–235 (2008).
Rey, A. M., Gorshkov, A. V. & Rubbo, C. Many-body treatment of the collisional frequency shift in fermionic atoms. Phys. Rev. Lett. 103, 260402 (2009).
Cazalilla, M. A., Ho, A. F. & Ueda, M. Ultracold gases of ytterbium: Ferromagnetism and Mott states in an SU(6) Fermi system. New J. Phys. 11, 103033 (2009).
Gorshkov, A. V., Jiang, L., Greiner, M., Zoller, P. & Lukin, M. D. Coherent quantum optical control with subwavelength resolution. Phys. Rev. Lett. 100, 093005 (2008).
Ciuryło, R., Tiesinga, E. & Julienne, P. S. Optical tuning of the scattering length of cold alkaline-earth-metal atoms. Phys. Rev. A 71, 030701(R) (2005).
Anderlini, M. et al. Controlled exchange interaction between pairs of neutral atoms in an optical lattice. Nature 448, 452–456 (2007).
Acknowledgements
We gratefully acknowledge conversations with M. M. Boyd, A. J. Daley, S. Fölling, W. S. Bakr, J. I. Gillen, L. Jiang, G. K. Campbell, Y. Qi and N. Blümer. This work was supported by NSF, CUA, DARPA, the Packard Foundation, AFOSR MURI and NIST.
Author information
Authors and Affiliations
Contributions
All authors contributed extensively to the work presented in this paper.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary Information
Supplementary Information (PDF 829 kb)
Rights and permissions
About this article
Cite this article
Gorshkov, A., Hermele, M., Gurarie, V. et al. Two-orbital S U(N) magnetism with ultracold alkaline-earth atoms. Nature Phys 6, 289–295 (2010). https://doi.org/10.1038/nphys1535
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nphys1535
This article is cited by
-
Probe for bound states of SU(3) fermions and colour deconfinement
Communications Physics (2023)
-
Many-body correlations in one-dimensional optical lattices with alkaline-earth(-like) atoms
Scientific Reports (2023)
-
Realization of highly isolated stable few-spin systems based on alkaline-earth fermions
Frontiers of Physics (2023)
-
Flavour-selective localization in interacting lattice fermions
Nature Physics (2022)
-
Observation of antiferromagnetic correlations in an ultracold SU(N) Hubbard model
Nature Physics (2022)