Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Dynamical axion field in topological magnetic insulators


Axions are weakly interacting particles of low mass, and were postulated more than 30 years ago in the framework of the Standard Model of particle physics. Their existence could explain the missing dark matter of the Universe. However, despite intensive searches, axions have yet to be observed. Here we show that magnetic fluctuations of topological insulators couple to the electromagnetic fields exactly like the axions, and propose several experiments to detect this dynamical axion field. In particular, we show that the axion coupling enables a nonlinear modulation of the electromagnetic field, leading to attenuated total reflection. We propose a new optical-modulator device based on this principle.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Crystal structure of Bi(Fe)2Se3.
Figure 2: Axionic polariton and ATR experiment.
Figure 3: Cantilever torque magnetometry measurement of axions.


  1. Wilczek, F. Two applications of axion electrodynamics. Phys. Rev. Lett. 58, 1799–1802 (1987).

    Article  ADS  Google Scholar 

  2. Qi, X.-L., Hughes, T. & Zhang, S.-C. Topological field theory of time-reversal invariant insulators. Phys. Rev. B 78, 195424 (2008).

    Article  ADS  Google Scholar 

  3. Essin, A. M., Moore, J. E. & Vanderbilt, D. Magnetoelectric polarizability and axion electrodynamics in crystalline insulators. Phys. Rev. Lett. 102, 146805 (2009).

    Article  ADS  Google Scholar 

  4. Qi, X., Li, R., Zang, J. & Zhang, S. Seeing the magnetic monopole through the mirror of topological surface states. Science 323, 1184–1187 (2009).

    Article  ADS  MathSciNet  Google Scholar 

  5. Wilczek, F. A theoretical physicist examines exotic particles lurking in new materials. Nature 458, 129 (2009).

    Article  ADS  Google Scholar 

  6. Zhou, Z., Žabèík, M., Lošták, P. & Uher, C. Magnetic and transport properties of Sb2−xFexTe3(0<x<0.02) single crystals. J. Appl. Phys. 99, 043901 (2006).

    Article  ADS  Google Scholar 

  7. Larson, P. & Lambrecht, W. R. L. Electronic structure and magnetism in Bi2Te3, Bi2Se3, Sb2Te3 doped with transition metals (Ti–Zn). Phys. Rev. B 78, 195207 (2008).

    Article  ADS  Google Scholar 

  8. Shitade, A. et al. Quantum spin Hall effect in a transition metal oxide Na2IrO3 . Phys. Rev. Lett. 102, 256403 (2009).

    Article  ADS  Google Scholar 

  9. Kim, B. J. et al. Phase-sensitive observation of a spin–orbital Mott state in Sr2IrO4 . Science 323, 1329–1332 (2009).

    Article  ADS  Google Scholar 

  10. Pesin, D. A. & Balents, L. Nature Phys. 10.1038/nphys1606 (2010).

  11. Guo, H.-M. & Franz, M. Three-dimensional topological insulators on the pyrochlore lattice. Phys. Rev. Lett. 103, 206805 (2009).

    Article  ADS  Google Scholar 

  12. Zhang, H. et al. Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nature Phys. 5, 438–442 (2009).

    Article  ADS  Google Scholar 

  13. Maiani, L., Petronzio, R. & Zavattini, E. Effects of nearly massless, spin-zero particles on light propagation in a magnetic field. Phys. Lett. B 175, 359–363 (1986).

    Article  ADS  Google Scholar 

  14. Mills, D. L. & Burstein, E. Polaritons: The electromagnetic modes of media. Rep. Prog. Phys. 37, 817–926 (1974).

    Article  ADS  Google Scholar 

  15. Raffelt, G. & Stodolsky, L. Mixing of the photon with low-mass particles. Phys. Rev. D 37, 1237–1249 (1988).

    Article  ADS  Google Scholar 

  16. Cameron, R. et al. Search for nearly massless, weakly coupled particles by optical techniques. Phys. Rev. D 47, 3707–3725 (1993).

    Article  ADS  Google Scholar 

  17. Lohndorf, M., Moreland, J., Kabos, P. & Rizzo, N. Microcantilever torque magnetometry of thin magnetic films. J. Appl. Phys. 87, 5995–5997 (2000).

    Article  ADS  Google Scholar 

  18. Mamin, H. J., Budakian, R., Chui, B. W. & Rugar, D. Detection and manipulation polarization in small spin ensembles. Phys. Rev. Lett. 91, 207604 (2003).

    Article  ADS  Google Scholar 

  19. Budakian, R., Mamin, H. J., Chui, B. W. & Rugar, D. Creating order from random fluctuations in small spin ensembles. Science 307, 408–411 (2005).

    Article  ADS  Google Scholar 

Download references


We wish to thank T. L. Hughes, S. B. Chung, S. Raghu, J. Maciejko, R. B. Liu and B. F. Zhu for insightful discussions. We thank M. Franz for pointing out a typographical error in the equations. This work is supported by the US Department of Energy, Office of Basic Energy Sciences under contract DE-AC03-76SF00515. J.W. acknowledges the support of the China Scholarship Council, NSF of China (Grant No.10774086) and the Program of Basic Research Development of China (Grant No. 2006CB921500).

Author information

Authors and Affiliations



R.L. carried out the mean-field calculation and proposed the axionic polariton and its application as an optical modulator. J.W. and X.-L.Q. proposed the experiment of measuring the dynamical axion field by a microcantilever. S.-C.Z. conceived the idea of dynamic axions in topological magnetic insulators. All authors contributed to the general idea of topological magnetic insulators and the preparation of the manuscript.

Corresponding author

Correspondence to Shou-Cheng Zhang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Li, R., Wang, J., Qi, XL. et al. Dynamical axion field in topological magnetic insulators. Nature Phys 6, 284–288 (2010).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing