Abstract
The rearrangement of plasma as a result of turbulence is among the most important processes that occur in planetary magnetospheres and in experiments used for fusion energy research. Remarkably, fluctuations that occur in active magnetospheres drive particles inward and create centrally peaked profiles. Until now, the strong peaking seen in space has been undetectable in the laboratory because the loss of particles along the magnetic field is faster than the net driven flow across the magnetic field. Here, we report the first laboratory measurements in which a strong superconducting magnet is levitated and used to confine high-temperature plasma in a configuration that resembles planetary magnetospheres. Levitation eliminates field-aligned particle loss, and the central plasma density increases markedly. The build-up of density characterizes a sustained turbulent pinch and is equal to the rate predicted from measured electric-field fluctuations. Our observations show that dynamic principles describing magnetospheric plasma are relevant to plasma confined by a levitated dipole.
Access options
Subscribe to Journal
Get full journal access for 1 year
70,80 €
only 5,90 € per issue
All prices include VAT for France.
Rent or Buy article
Get time limited or full article access on ReadCube.
from$8.99
All prices are NET prices.
References
- 1.
Falthammar, C.-G. Effects of time dependent electric fields on geomagnetically trapped radiation. J. Geophys. Res. 70, 2503–2516 (1965).
- 2.
Birmingham, T. Convection electric fields and diffusion of trapped magnetospheric radiation. J. Geophys. Res. 74, 2169–2181 (1969).
- 3.
Schulz, M. & Lanzerotti, L. J. Particle Diffusion in the Radiation Belts (Springer, 1974).
- 4.
Lyon, J. G. The solar wind-magnetosphere-ionosphere system. Science 288, 1987–1991 (2000).
- 5.
Northrop, T. & Teller, E. Stability of the adiabatic motion of charged particles in the Earths field. Phys. Rev. 117, 215–225 (1960).
- 6.
Rosenbluth, M. N. & Longmire, C. L. Stability of plasmas confined by magnetic fields. Ann. Phys. 1, 120–140 (1957).
- 7.
Frank, L. A. On the extraterrestrial ring current during geomagnetic storms. J. Geophys. Res. 72, 3753–3767 (1967).
- 8.
Lyons, L. R. & Williams, D. J. The storm and poststorm evolution of energetic (35–560 keV) radiation belt electron distributions. J. Geophys. Res. 80, 3985–3994 (1975).
- 9.
Lyons, L. R. & Williams, D. J. Storm-associated variations of equatorially mirroring ring current protons, 1–800 keV, at constant first adiabatic invariant. J. Geophys. Res. 81, 216–220 (1976).
- 10.
Koepke, M. Interrelated laboratory and space plasma experiments. Rev. Geophys. 46, 1–43 (2008).
- 11.
Warren, H. & Mauel, M. E. Observation of chaotic particle-transport induced by drift-resonant fluctuations in a magnetic dipole field. Phys. Rev. Lett. 74,1351–1354 (1995).
- 12.
Levitt, B., Maslovsky, D. & Mauel, M. E. Observation of centrifugally driven interchange instabilities in a plasma confined by a magnetic dipole. Phys. Rev. Lett. 94, 175002 (2005).
- 13.
Garbet, X. et al. Turbulent particle transport in magnetized plasmas. Phys. Rev. Lett. 91, 035001 (2003).
- 14.
Hoang, G. T. et al. Parametric dependence of turbulent particle transport in tore supra plasmas. Phys. Rev. Lett. 93, 135003 (2004).
- 15.
Baker, D. A perturbative solution of the drift kinetic equation yields pinch type convective terms in the particle and energy fluxes for strong electrostatic turbulence. Phys. Plasmas 11, 992–996 (2004).
- 16.
Bourdelle, C. Turbulent particle transport in magnetized fusion plasma. Plasma Phys. Control. Fusion 47, A317–A326 (2005).
- 17.
Weiland, J., Eriksson, A., Nordman, H. & Zagorodny, A. Progress on anomalous transport in tokamaks, drift waves and nonlinear structures. Plasma Phys. Control. Fusion 49, A45–A57 (2007).
- 18.
Burch, J. L. et al. Views of Earth’s Magnetosphere with the IMAGE Satellite. Science 291, 619–624 (2001).
- 19.
Russell, C. T. The dynamics of planetary magnetospheres. Planet. Space Sci. 49, 1005–1030 (2001).
- 20.
Yamada, T. et al. Anatomy of plasma turbulence. Nature Phys. 4, 721–725 (2008).
- 21.
Furth, H. P. Magnetic confinement fusion. Science 249, 1522–1527 (1990).
- 22.
Boxer, A. C., Garnier, D. T. & Mauel, M. E. Multichannel microwave interferometer for the levitated dipole experiment. Rev. Sci. Instrum. 80, 043502 (2009).
- 23.
Wolf, R. A., Spiro, R., Sazykin, S. & Toffoletto, F. How the Earth’s inner magnetosphere works: an evolving picture. J. Atmos. Solar Terr. Phys. 69, 288–302 (2007).
- 24.
Melrose, D. B. Rotational effects in the magnetosphere of Jupiter. Planet. Space Sci. 15, 381–393 (1967).
- 25.
Garnier, D. T. et al. Production and study of high-beta plasma confined by a superconducting dipole magnet. Phys. Plasma 13, 056111 (2006).
- 26.
Hasegawa, A. A dipole field fusion reactor. Comments Plasma Phys. Control. Fusion 11, 147–151 (1987).
- 27.
Hasegawa, A., Chen, L. & Mauel, M. E. A D-3He fusion-reactor based on a dipole magnetic-field. Nucl. Fusion 30, 2405–2413 (1990).
- 28.
Hoffert, M. et al. Advanced technology paths to global climate stability: Energy for a greenhouse planet. Science 298, 981–987 (2002).
- 29.
Kesner, J., Garnier, D. T., Hansen, A., Mauel, M. E. & Bromberg, L. Helium catalysed D–D fusion in a levitated dipole. Nucl. Fusion 44, 193–203 (2004).
- 30.
Pastukhov, V. & Chudin, N. Self-consistent turbulent convection in a magnetized plasma. JETP Lett. 82, 356–365 (2005).
- 31.
Kouznetsov, A., Freidberg, J. P. & Kesner, J. Quasilinear theory of interchange modes in a closed field line configuration. Phys. Plasmas 14, 102501 (2007).
- 32.
Kesner, J. & Garnier, D. Convective cell formation in a levitated dipole. Phys. Plasmas 7, 2733–2737 (2000).
- 33.
Garnier, D. T. et al. Design and initial operation of the LDX facility. Fusion Eng. Des. 81,2371–2380 (2006).
- 34.
Zhukovsky, Z. et al. First integrated test of the superconducting magnet systems for the levitated dipole experiment (LDX). Fusion Eng. Des. 75, 29–32 (2005).
- 35.
Stix, T. H. Waves in Plasmas (American Institute of Physics, 1992).
- 36.
Hansen, A. K. et al. Varying electron cyclotron resonance heating on the Levitated Dipole Experiment. J. Fusion Energy 26, 57–60 (2007).
- 37.
Ortiz, E. E. et al. Effects of the hot electron interchange instability on plasma confined in a dipolar magnetic field. J. Fusion Energy 26, 139–144 (2007).
- 38.
Boxer, A. C. Density Profiles of Plasmas Confined by the Field of a Levitating, Dipole Magnet, Doctoral Dissertation (MIT, 2008).
Acknowledgements
The authors acknowledge the technical expertise of R. Lations, P. Michael, J. Minervini, D. Strahan and A. Zhukovsky that has been required for the design and successful operation of the LDX superconducting magnets. LDX is a joint research project of Columbia University and the Massachusetts Institute of Technology and is supported by the USDOE Office of Fusion Energy Sciences with Grants DE-FG02-98ER54458 and DE-FG02-98ER54459.
Author information
Affiliations
Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- A. C. Boxer
- , R. Bergmann
- , J. L. Ellsworth
- , J. Kesner
- & P. Woskov
Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027, USA
- D. T. Garnier
- & M. E. Mauel
Authors
Search for A. C. Boxer in:
Search for R. Bergmann in:
Search for J. L. Ellsworth in:
Search for D. T. Garnier in:
Search for J. Kesner in:
Search for M. E. Mauel in:
Search for P. Woskov in:
Contributions
A.B. constructed the interferometer array and parameterized the density profile. R.B. constructed and installed the probe array. J.E. installed and analysed optical measurements. P.W. installed and calibrated the radiometers. D.G. designed and implemented the dipole levitation system and supervised operation of the experimental facility. M.E.M. noted the time-evolution of the inward particle pinch, modelled the relationship between edge fluctuations and diffusion and drafted the article. All authors participated in the planning and execution of experiments, discussed the experimental results and commented on the manuscript.
Competing interests
The authors declare no competing financial interests.
Corresponding author
Correspondence to M. E. Mauel.
Supplementary information
PDF files
- 1.
Supplementary Information
Supplementary Information
Videos
- 1.
Supplementary Information
Supplementary Information
Rights and permissions
To obtain permission to re-use content from this article visit RightsLink.
About this article
Further reading
-
1.
Scientific Reports (2015)
-
2.
Nature Physics (2010)
-
3.
Journal of Fusion Energy (2010)