Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Naturally occurring resonators in random lasing of π-conjugated polymer films

Abstract

Random lasing consists of a sequence of narrow, coherent spectral lines formed when stimulated emission in a disordered gain medium is excited above threshold excitation intensity, Ith. We studied the Ith distribution function in π-conjugated polymer films, and its dependence on the excitation area size and polymer mixture with TiO2 nanoparticles; optical pictures of the excited film area support the statistical measurements. At Ith we found that a single dominant random lasing resonator appears in the picture, with good agreement between its diameter and the cavity size extracted from the power Fourier transform analysis of the emission spectrum. This was directly confirmed by a new technique of space/spectrum cross-correlation of the laser emission lines from the excited area with 10×10 μm2 spatial resolution. The statistical results coupled with the imaging data provide strong evidence for the model of random resonators in the gain medium for explaining random lasing in π-conjugated polymer films.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Properties of random-laser emission spectra.
Figure 2: Random-laser spectra of a DOO-PPV film at various intensities, I, compared with picture images of the excitation area.
Figure 3: Space/spectrum cross-correlation (SSCC) of a lasing random cavity.
Figure 4: Detailed space/spectrum cross-correlation spectroscopy (SSCC) of two competing cavities in the excitation area.
Figure 5: Random-lasing threshold intensity histograms, F(n)(Ith).
Figure 6: Light mean free path and RL in DOO-PPV films mixed with TiO2 nanoparticles.

Similar content being viewed by others

References

  1. Noginov, M. A. Solid-State Random Lasers (Springer Series in Optical Sciences, Vol. 105, Springer, 2005).

    Google Scholar 

  2. Wiersma, D. S. The physics and applications of random lasers. Nature Phys. 4, 359–367 (2008).

    Article  ADS  Google Scholar 

  3. Siegman, A. E. Lasers (Univ. Science Books, 1986).

    Google Scholar 

  4. Letokhov, V. S. Generation of light by scattering medium with negative resonance absorption. Zh. Eksp. Teor. Fiz. 53, 1442–1447 (1967); Sov. Phys. JETP 26, 835–840 (1968).

  5. Ambartsumyan, R. V., Basov, N. G., Kryukov, P. G. & Letokhov, V. S. A laser with a nonresonant feedback. IEEE J. Quantum Electron. QE-2, 442–446 (1966).

    Article  ADS  Google Scholar 

  6. Markushev, V. M., Zolin, V. F. & Briskina, Ch. M. Powder laser. Zh. Prikl. Spektrosk. 45, 847–850 (1986).

    Google Scholar 

  7. Gouedard, C., Husson, D., Sauteret, C., Auzel, F. & Migus, A. Generation of spatially incoherent short pulses in laser-pumped neodymium stoichiometric crystals and powders. J. Opt. Soc. Am. B 10, 2358–2362 (1993).

    Article  ADS  Google Scholar 

  8. Lawandy, N. M., Balachandrian, R. M., Gomes, A. S. L. & Sauvain, E. Laser action in strongly scattering media. Nature 368, 436–438 (1994).

    Article  ADS  Google Scholar 

  9. Sha, W. L., Liu, C. H. & Alfano, R. R. Spectral and temporal measurements of laser action of Rhodamine-640 dye in strongly scattering media. Opt. Lett. 19, 1922–1924 (1994).

    Article  ADS  Google Scholar 

  10. John, S. & Pang, G. Theory of lasing in a multiple-scattering medium. Phys. Rev. A 54, 3642–3652 (1996).

    Article  ADS  Google Scholar 

  11. Beenakker, C. W. J. Thermal radiation and amplified spontaneous emission from a random medium. Phys. Rev. Lett. 81, 1829–1832 (1998).

    Article  ADS  Google Scholar 

  12. Jiang, X. & Soukoulis, C. M. Time dependent theory for random lasers. Phys. Rev. Lett. 85, 70–73 (2000).

    Article  ADS  Google Scholar 

  13. Apalkov, V. M., Raikh, M. E. & Shapiro, B. Almost localized photon modes in continuous and discrete models of disordered media. J. Opt. Soc. Am. B 21, 132–140 (2004).

    Article  ADS  Google Scholar 

  14. Türeci, H. E., Ge, L., Rotter, S. & Stone, A. D. Strong interactions in multimode random lasers. Science 320, 643–646 (2008).

    Article  ADS  Google Scholar 

  15. Hackenbroich, G., Viviescas, C., Elattari, B. & Haake, F. Photocount statistics of chaotic lasers. Phys. Rev. Lett. 86, 5262–5265 (2001).

    Article  ADS  Google Scholar 

  16. Zaitsev, O. Spacing statistics in two-mode random lasing. Phys. Rev. A 76, 043842 (2007).

    Article  ADS  Google Scholar 

  17. Wiersma, D. S., van Albada, M. P. & Lagendijk, A. Random lasers? Nature 373, 203–204 (1995).

    Article  ADS  Google Scholar 

  18. Balachandran, R. M., Pacheco, D. P. & Lawandy, N. M. Laser action in polymeric gain media containing scattering particles. Appl. Opt. 35, 640–643 (1996).

    Article  ADS  Google Scholar 

  19. Cao, H. et al. Random laser action in semiconductor powder. Phys. Rev. Lett. 82, 2278–2281 (1999).

    Article  ADS  Google Scholar 

  20. Frolov, S. V., Vardeny, Z. V., Yoshino, K., Zakhidov, A. & Baughman, R. H. Stimulated emission in high-gain organic media. Phys. Rev. B 59, 5284–5287 (1999).

    Article  ADS  Google Scholar 

  21. Mujumdar, S., Ricci, M., Torre, R. & Wiersma, D. S. Amplified extended modes in random lasers. Phys. Rev. Lett. 93, 053903 (2004).

    Article  ADS  Google Scholar 

  22. Polson, R. C. & Vardeny, Z. V. Organic random lasers in the weak scattering regime. Phys. Rev. B 71, 045205 (2005).

    Article  ADS  Google Scholar 

  23. Wu, X. et al. Random lasing in weakly scattering systems. Phys. Rev. A 74, 053812 (2006).

    Article  ADS  Google Scholar 

  24. Popov, O., Zilbershtein, A. & Davidov, D. Random lasing from dye-gold nanoparticles in polymer films: Enhanced gain at the surface-plasmon-resonance wavelength. Appl. Phys. Lett. 89, 191116 (2006).

    Article  ADS  Google Scholar 

  25. Noginov, M. A. et al. Short-pulsed stimulated emission in the powders of NdAl3(BO3)4, NdSc3(BO3)4, and Nd:Sr5(PO4)3F laser crystals. J. Opt. Soc. Am. B 13, 2024–2033 (1996).

    Article  ADS  Google Scholar 

  26. Noginov, M. A. et al. Dependence of NdSc3(BO3)4 random laser parameters on particle size. J. Opt. Soc. Am. B 21, 191–200 (2004).

    Article  ADS  Google Scholar 

  27. Liu, Y. J., Sun, X. W., Elim, H. I. & Ji, W. Gain narrowing and random lasing from dye-doped polymer-dispersed liquid crystals with nanoscale liquid crystal droplets. Appl. Phys. Lett. 89, 011111 (2006).

    Article  ADS  Google Scholar 

  28. Strangi, G. et al. Random lasing and weak localization of light in dye-doped nematic liquid crystals. Opt. Express 14, 7737–7744 (2006).

    Article  ADS  Google Scholar 

  29. Anglos, D. et al. Random laser action in organic–inorganic nanocomposites. J. Opt. Soc. Am. B 21, 208–213 (2004).

    Article  ADS  Google Scholar 

  30. Sun, B. Q. & Jiang, D. S. Photon localization and lasing in disordered GaNxAs1−x optical superlattices. Phys. Rev. B 73, 195112 (2006).

    Article  ADS  Google Scholar 

  31. Quochi, F. et al. Gain amplification and lasing properties of individual organic nanofibers. Appl. Phys. Lett. 88, 041106 (2006).

    Article  ADS  Google Scholar 

  32. Polson, R. C., Chipouline, A. & Vardeny, Z. V. Random lasing in π-conjugated films and infiltrated opals. Adv. Mater. 13, 760–764 (2001).

    Article  Google Scholar 

  33. Polson, R. C., Raikh, M. E. & Vardeny, Z. V. Universality in unintentional laser resonators in π-conjugated polymer films. C. R. Physique 3, 509–521 (2002).

    Article  ADS  Google Scholar 

  34. Lawandy, N. M. Paint-on lasers light the way for new technologies. Photon. Spectra 28, 119–124 (1994).

    Google Scholar 

  35. Polson, R. C. & Vardeny, Z. V. Random lasing in human tissues. Appl. Phys. Lett. 85, 1289–1291 (2004).

    Article  ADS  Google Scholar 

  36. de Matos, C. J. S. et al. Random fiber laser. Phys. Rev. Lett. 99, 153903 (2007).

    Article  ADS  Google Scholar 

  37. Cao, H. et al. Random lasers with coherent feedback. IEEE J. Quantum Electron. 9, 111–119 (2003).

    Article  Google Scholar 

  38. Van der Molen, K. L., Tjerkstra, R. W., Mosk, A. P. & Lagendijk, A. Spatial extent of random laser modes. Phys. Rev. Lett. 98, 143901 (2007).

    Article  ADS  Google Scholar 

  39. Vanneste, C., Sebbah, P. & Cao, H. Lasing with resonant feedback in weakly scattering random systems. Phys. Rev. Lett. 98, 143902 (2007).

    Article  ADS  Google Scholar 

  40. Lepri, S., Cavalieri, S., Oppo, G. L. & Wiersma, D. S. Statistical regimes of random laser fluctuations. Phys. Rev. A 75, 063820 (2007).

    Article  ADS  Google Scholar 

  41. Wu, X. & Cao, H. Statistical studies of random-lasing modes and amplified spontaneous emission spikes in weakly scattering systems. Phys. Rev. A 77, 013832 (2008).

    Article  ADS  Google Scholar 

  42. Milner, V. & Genack, A. Z. Photon localization laser; low-threshold lasing in random amplifying layered medium via wave localization. Phys. Rev. Lett. 94, 073901 (2005).

    Article  ADS  Google Scholar 

  43. Apalkov, V. M. & Raikh, M. E. Universal fluctuations of the random lasing threshold in a sample of a finite area. Phys. Rev. B 71, 054203 (2005); erratum Phys. Rev. B 72, 189903 (2005).

  44. Apalkov, V. M., Raikh, M. E. & Shapiro, B. Random resonators and pre-localized modes in disordered dielectric films. Phys. Rev. Lett. 89, 016802 (2002).

    Article  ADS  Google Scholar 

  45. Polson, R. C., Levina, G. & Vardeny, Z. V. Spectral analysis of polymer microring lasers. Appl. Phys. Lett. 76, 3858–3860 (2000).

    Article  ADS  Google Scholar 

  46. Tulek, A. Laser action in π-conjugated semiconductors. PhD thesis, Univ. of Utah (2008).

  47. Ling, Y. et al. Investigation of random lasers with resonant feedback. Phys. Rev. A 64, 063808 (2001).

    Article  ADS  Google Scholar 

  48. Meng, X., Fujita, K., Murai, S. & Tanaka, K. Coherent random lasers in weakly scattering polymer films containing silver nanoparticles. Phys. Rev. A 79, 053817 (2009).

    Article  ADS  Google Scholar 

  49. Wiersma, D. S., Bartolini, P., Lagendijk, A. & Righini, R. Localization of light in a disordered medium. Nature 390, 671–673 (1997).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank M. Raikh and B. Shapiro for many useful discussions. The measurements were made at the John Dixon Laser Institute. This work was supported in part by the DOE grant No DE-FG02-05ER03172 and NSF DMR grant No 08-03325 at the University of Utah. A.T. is grateful for the support of the Institute of Material Science and Nanotechnology (UNAM) at Bilkent University.

Author information

Authors and Affiliations

Authors

Contributions

A.T. designed and measured the threshold intensity distribution functions and the SSCC images; R.C.P. designed and measured the detailed SSCC images; Z.V.V. was the research leader, who planned the project and wrote the manuscript.

Corresponding author

Correspondence to Z. V. Vardeny.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 442 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tulek, A., Polson, R. & Vardeny, Z. Naturally occurring resonators in random lasing of π-conjugated polymer films. Nature Phys 6, 303–310 (2010). https://doi.org/10.1038/nphys1509

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys1509

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing