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Nernst effect and dimensionality in the
quantum limit
Zengwei Zhu1,2, Huan Yang1, Benoît Fauqué1, Yakov Kopelevich3 and Kamran Behnia1*
The Nernst effect has recently emerged as a very sensitive,
yet poorly understood, probe of electron organization in
solids1–4. Graphene, a single layer of carbon atoms set
in a honeycomb lattice, embeds a two-dimensional gas of
massless electrons5 and hosts a particular version of the
quantum Hall effect6,7. Recent experimental investigations
of its thermoelectric response8–10 are in agreement with the
theory conceived for a two-dimensional electron system in
the quantum Hall regime11,12. Here, we report on a study of
graphite13, a macroscopic stack of graphene layers, which
establishes a fundamental link between the dimensionality
of an electronic system and its Nernst response. In striking
contrast with the single-layer case, the Nernst signal sharply
peaks whenever a Landau level meets the Fermi level. Thus,
the degrees of freedom provided by finite interlayer coupling
lead to an enhanced thermoelectric response in the vicinity
of the quantum limit. As Landau quantization slices a three-
dimensional Fermi surface, each intersection of a Landau level
with the Fermi level modifies the Fermi-surface topology.
According to our results, the most prominent signature of
such a topological phase transition emerges in the transverse
thermoelectric response.

The Nernst effect is the transverse voltage generated by a
longitudinal thermal gradient in the presence of a magnetic field.
Our study of this effect in graphite, the first carried out at low
temperatures and high magnetic fields, uncovers the crucial role
of interlayer coupling in a three-dimensional (3D) metal. When
the field is strong enough to push the system to the quantum
limit, the quantum oscillations of the Nernst response easily dwarf
the oscillations seen in other transport coefficients. Moreover, the
Nernst signal sharply peaks whenever a Landau level intersects the
chemical potential. Both of these features are absent in monolayer
graphene8–10, but were previously reported in bulk bismuth14. The
Nernst peaks seem to be the signatures of a topological phase
transition15, which occurs at the intersection of Landau and Fermi
levels16. Such a field-induced modification of the Fermi-surface
topology at lower Landau levels is exclusive to three dimensions, for
which no adequate quantitative description of the thermoelectric
response in the vicinity of the quantum limit is yet available. The
results point to the configurational degrees of freedom associated
with the finite dispersion of electrons along themagnetic field as the
source of a huge off-diagonal thermoelectric response.

Figure 1 shows the thermal evolution of the field dependence
of the Nernst signal, Sxy, in two highly oriented pyrolytic
graphite (HOPG) samples. As the temperature decreases, quantum
oscillations become sharper and their visibility extends to lower
fields. In graphite, quantum oscillations of various physical
properties such as resistivity (the Shubnikov–de Hass effect)17,
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magnetic susceptibility (the de Hass–van Alphen effect)18, the Hall
coefficient and thermopower19 were measured many years ago and
the results are in agreement with the structure of the Fermi surface
predicted by the Slonczewski–Weiss–McClure (SWM) model20,21.
More recently, quantum oscillation studies using new techniques
for analysis and measurements have emerged and the degree of
accuracy with which the SWMmodel describes the fine structure of
the Fermi surface has become a subject of ongoing debate22,23 (see
Supplementary Information).

The particularity of the Nernst effect as a probe of quantum
oscillations at low-index Landau levels is highlighted in Fig. 2.
Quantum oscillations are visible in the field dependence of
both diagonal and off-diagonal components of electric and
thermoelectric conductivity tensors. However, only in the case of
transverse thermoelectric response, the oscillating signal exceeds by
far the non-oscillating background. In contrast, the Shubnikov–de
Haas oscillations represent a tiny fraction of the overall longitudinal
resistivity. Moreover, whereas the longitudinal response dominates
for resistivity (ρxx�ρxy), theNernst signal is an order ofmagnitude
larger than the Seebeck coefficient (Sxy�Sxx). The large magnitude
of the Nernst coefficient in graphite (second only to bismuth
(ref. 24) among metals) is an expected consequence of the high
mobility (3×105 cm2 V−1 s−1) and the low Fermi energy (19meV)
of the system (see Supplementary Information for details).

Figure 3 compares the fine structure of ρxy and Sxy when the
lowest Landau levels cross the Fermi level. The Nernst response
peaks when the magnetic field attains a value corresponding to an
intersection of a Landau level with the Fermi level. The magnitudes
of these fields were determined by theory25 and confirmed by
experiment19 many years ago (see Supplementary Information for
details on the indexing of the Landau levels and a comparison of the
fine structure in Sxy and Sxx). The peaks in Sxy for the lowest Landau
levels of the two pockets can be clearly associated with a jump or
drop in ρxy depending on the sign (hole-like or electron-like) of the
carriers of the pocket. Between jumps and drops, that is when the
Fermi level lies between distinct Landau levels, the Hall resistivity,
although not strictly flat, shows little field dependence. Presenting
the samedata in a different fashion in Fig. 3c, one can see that at high
fields and low temperatures, ν/T becomes constant between two
successive peaks. In other words, in the low-T high-B limit, when a
Landau level does not intersect the Fermi level, the Nernst response
becomes both B-linear and T -linear but sharply peaks otherwise,
with a singularity that becomes more pronounced with cooling. As
well as the two above-mentionedHOPG samples, we alsomeasured
a natural single crystal of graphite and found very similar results (see
Supplementary Information).

It is illuminating to compare these features with results very
recently reported for graphene8,10. The first difference is the sheer
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Figure 1 | The field dependence of the Nernst signal in two HOPG
samples at different temperatures. The signal was measured with an
in-plane thermal gradient and a field oriented perpendicular to the layers.
As the temperature is lowered, oscillations become sharper and the
Zeeman splitting becomes visible.

magnitude of the Nernst response. Whereas in graphene, the
measurable signal at T= 10K is in the range of 10–20 µVK−1, the
Nernst signal in the same temperature range in graphite is two
orders of magnitude larger and approaches 1mVK−1 (Fig. 1, top
panel). This difference is most probably due to the larger electron
mobility of graphite, which can exceed by two orders of magnitude
the mobility in available graphene samples (see Supplementary
Information on the magnitude of the Nernst effect). The second
and more fundamental difference is the field profile of the Nernst
response. In graphene, the intersection of the chemical potential
and a Landau level (which can be realized either by scanning the
field or modifying the gate voltage) leads to a change in the sign
of Sxy. In other words, the coincidence of a Landau level with
the chemical potential is concomitant with a jump in ρxy and a
vanishing Sxy . In graphite, as seen above, theNernst response attains
its maximum in the same conditions. Note that the huge electron
mobility, the origin of the large low-field non-oscillating Nernst
response in graphite, can neither explain the preponderance of the
oscillating component, nor its particular profile.

Interestingly, the field profile of the Nernst response we find
here is analogous to the one previously reported in bulk bismuth14.
On the other hand, the Nernst response of graphene8,10 presents a
functional form reminiscent of the case of the 2D electron systems
realized in semiconductor heterostructures26. In both 2D cases, Sxy
vanishes at the intersection of Landau and Fermi levels as predicted
by the theory conceived for two dimensions11,12,27.
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Figure 2 | Quantum oscillations of various transport coefficients at low
temperatures. a, Longitudinal and Hall resistivity of sample 2.
Shubnikov–de Haas oscillations superpose on a huge non-oscillating
background. b, The field dependence of the thermoelectric coefficients in
the same sample. The Nernst response dominates by far the Seebeck
coefficient and presents pronounced well-defined oscillations. The Fermi
surface and the Brillouin zone of graphite are shown as an inset in a. The
Fermi surface consists of six pairs of adjacent ellipsoid pockets (in blue and
green) hosting carriers of opposite signs.

Two features set graphene apart from both bismuth and bulk
graphite. Themost fundamental is the presence of a finite third-axis
dispersion in the bulk materials. The second difference is that both
bismuth and bulk graphite are compensated semi-metals hosting
equal concentrations of mobile carriers of both signs. Experiments
on graphene were carried out on a system with a single type of
carrier determined by the sign of the applied gate voltage. These two
features lead to the emergence of a qualitatively different transverse
thermoelectric response.

According to the SWM model, the Fermi surfaces of both
electrons and holes in graphite are elongated ellipsoids. The precise
magnitude of interlayer coupling is amatter of debate and the Fermi
surface of one type of carrier may not be closed along the c axis. As
a very anisotropic conductor and a bulk quasi-2Dmetal, HOPG has
been reported to host the quantumHall effect22.

However, a finite interlayer coupling, no matter how small,
would warp the perfect cylindrical Fermi surface of a two-
dimensional monolayer. Its drastic consequences are shown in
Fig. 4, which compares the passage of successive Landau levels
through the chemical potential in the presence (3D, left) or absence
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Figure 3 | Hall and Nernst effects in the vicinity of the quantum limit.
a–c, The variation with inverse magnetic field of the Hall resistivity, ρxy (a),
the Nernst signal, Sxy (b), and the Nernst coefficient divided by
temperature, ν/T= Sxy/BT, at three different temperatures (c). When a
Landau level meets the Fermi level, the Hall resistivity presents a jump and
the Nernst signal sharply peaks. At low temperature and high field, Sxy
becomes linear in field and temperature when the Fermi level is between
two Landau levels. The inset shows a magnification of the peak positions.
When a Landau level is at the Fermi level, ν/T increases with decreasing
temperature, otherwise it attains a temperature-independent magnitude.
Landau levels of the large (L) and small (S) pockets of the Fermi surface are
indexed in b.

(2D, right) of the z-axis dispersion. In three dimensions, Landau
quantization truncates the Fermi surface. The wavevectors of
mobile electrons are confined to slices formed by the intersection
of the Fermi–Dirac distribution and the Landau spectrum. The
thickness of these slices depends on temperature and disorder.
As the field is swept, the slices move outward and downward.
The Nernst peaks are concomitant with the merger of two slices.
As first noticed many years ago16, such a merger is a case
of an electronic topological phase transition15. Interestingly, a
singularity in the Nernst response in the vicinity of a topological
transition was theoretically predicted in another context28. On
the other hand, in the 2D case, shown on the right-hand side of
the same figure, no such topological transition occurs when the
ellipsoid is replaced by a perfect cylinder. Here, when the Landau
level coincides with the chemical potential, the system becomes
dissipative, otherwise it is gapped.
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Figure 4 | Dimensionality and the profile of a Nernst quantum oscillation.
a–c, A comparison of how Landau levels (indexed n,n− 1) cross the
chemical potential, µ, as the magnetic field is swept, in the 3D (left
column) and 2D (right column) cases. In each panel, the Fermi surface with
cuts of the Landau cylinders in reciprocal space is shown together with a
plot of the corresponding energies. The z axis is set by the direction of the
applied magnetic field. In the 3D case, an ellipsoidal Fermi surface is
truncated to slices, which are the intersections of the Fermi level and the
Landau levels. In the 2D case, the Fermi surface is a perfect cylinder and
there are no slices. d, The Nernst signal. In 3D (left panel), Sxy peaks when
the Landau level meets the Fermi level and a topological phase transition
occurs by the merger of two slices. In the left column, the odd number of
slices in b is to be contrasted with the even number of slices in a and c. In
2D (right panel), Sxy vanishes when a Landau level intersects the chemical
potential. The experimentally resolved Nernst signal presents the profile in
the left panel of d in both graphite (as reported here) and bismuth14. On
the other hand, in graphene8–10 and semiconducting heterostructures26 it
presents the profile in the right panel of d.

In the 2D case, displacing a Landau level across the chemical
potential leads to a symmetric Sxy profile. This can be qualitatively
understood in the semi-classical picture. The thermoelectric tensor
S̃measures the change in conductivity tensor, σ̃ , caused by a small
shift in the chemical potential:

S̃=
π2

3
k2BT
e
σ̃−1

∂σ̃

∂ε

∣∣
ε=µ

According to this equation (sometimes called the extended
Mott formula), if the chemical potential happens to be at its
optimal position for amaximalHall mobility σxx/σxy , the transverse
thermoelectric response, Sxy, is expected to vanish. This simple
argument can explain the qualitative profile of the Nernst response
in the 2D case, which is symmetric and vanishes at the intersection.
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When a Landau level is precisely at the chemical potential, any shift
of the latter would diminish the Hall mobility. This zero response
should be sandwiched between a positive and a negative peak (as
shown in Fig. 4d, right panel). The signs of these two reflect the sign
of the energy derivative when one approaches the critical field from
lower fields or higher fields.

The profile of the Seebeck coefficient in the 3D graphite (see
Supplementary Fig. S3) is not qualitatively different from the 2D
one.On the other hand, theNernst response in the 3D configuration
emerges as a remarkable singularity. The clear asymmetry between
configuration a and configuration c in the left panels of Fig. 4 is the
key to the functional shape of the Nernst response. Experimentally,
Sxy steadily increases as the two separated slices of the Fermi
surface move towards each other. It peaks when they merge to
form a single one and begins a sudden drop after the Landau level
moves beyond the Fermi level. The configurational entropy of the
electronic states with vanishing kz and quantized kxy , which emerge
as this topological phase transition occurs, seems to be the source of
the enhancedNernst response exclusive to the 3D case.

The compensated nature of the bulk semi-metals under study
imposes another constraint. Charge neutrality implies that any
change in the density of carriers with one sign would shift the
chemical potential in a way to maintain the equality between the
concentration of electrons and holes. A topological transition in one
(for example, hole-like) ellipsoid thus moves the chemical potential
and modifies the shape of the other.

A satisfactory theoretical understanding of the Nernst effect
in bulk systems across the quantum limit is still missing. It is a
remarkable irony that the least theoretically understood transport
coefficient happens to be the most experimentally sensitive probe
of quantum oscillations. Extending these measurements to higher
magnetic fields would let one probe the thermoelectric response of
graphite in the extreme quantum limit. Such a study in bismuth has
recently uncovered several enigmatic field scales29. Another line of
investigation would be the study of n-layer graphene to document
the details of the dimensionality cross-over found here.
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