Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A universal origin for secondary relaxations in supercooled liquids and structural glasses

An Erratum to this article was published on 03 March 2015

This article has been updated

Abstract

Supercooled liquids and glasses show a range of relaxation times. Nearly all glass-forming liquids show secondary relaxations, high-frequency dynamical modes of structural reconfiguration seemingly distinct from the primary alpha relaxations. We show that accounting for driving-force fluctuations and the diversity of reconfiguring shapes in the random first-order transition theory yields a new dynamical process that shares many of the features ascribed to secondary relaxations. Whereas primary relaxation takes place through activated events involving compact regions, secondary relaxation is governed by more ramified, string-like or percolation-like clusters of particles. These secondary relaxations generate a low free-energy tail on the distribution of activation barriers, which becomes more prominent with increasing temperature. The activation barrier distributions of the two processes merge near the dynamical-crossover temperature Tc, where the secondary process ultimately becomes the dominant mode of structural relaxation. These string-like reconfigurations are seen to smooth the transition at Tc between high-temperature collisional dynamics and activated events.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Disordered free-energy profiles showing the free-energy cost of rearranging a region with Nc compact particles and Nf stringy particles.
Figure 2: Activation-barrier distribution for free-energy barriers governing relaxation events in supercooled liquids.
Figure 3: Activation-barrier distribution for strong liquid with ΔCP≈1 kB per bead.
Figure 4: Activation-barrier distribution for fragile liquids with ΔCP≈3 kB per bead.
Figure 5: Relative importance of the secondary process to the total relaxation.
Figure 6: Activation-barrier distribution for secondary relaxation calculated from the statistical sampling of the fuzzy-sphere model with fluctuations.

Similar content being viewed by others

Change history

  • 18 February 2015

    In the version of this Article originally published the equation for the distribution of free energy barriers, which follows equation 4, was incorrect and should have read:

    . This error has now been corrected in the online versions of the Article.

References

  1. Adichtchev, S. et al. Fast relaxation processes in glasses as revealed by depolarized light scattering. J. Non-Cryst. Solids 353, 1491–1500 (2007).

    Article  ADS  Google Scholar 

  2. Kudlik, A., Benkhof, S., Blochowicz, T., Tschirwitz, C. & Rossler, E. The dielectric response of simple organic glass formers. J. Mol. Struct. 479, 201–218 (1999).

    Article  ADS  Google Scholar 

  3. Ngai, K. L. & Capaccioli, S. Relation between the activation energy of the Johari–Goldstein β relaxation and Tg of glass formers. Phys. Rev. E 69, 031501 (2004).

    Article  ADS  Google Scholar 

  4. Wang, L. M. & Richert, R. Primary and secondary relaxation time dispersions in fragile supercooled liquids. Phys. Rev. B 76, 064201 (2007).

    Article  ADS  Google Scholar 

  5. Lunkenheimer, P., Schneider, U., Brand, R. & Loidl, A. Glassy dynamics. Contemp. Phys. 41, 15–36 (2000).

    Article  ADS  Google Scholar 

  6. Frauenfelder, H. et al. A unified model of protein dynamics. Proc. Natl Acad. Sci. USA 106, 5129–5134 (2009).

    Article  ADS  Google Scholar 

  7. Thayyil, M. S., Capaccioli, S., Prevosto, D. & Ngai, K. L. Is the Johari–Goldstein beta-relaxation universal? Phil. Mag. 88, 4007–4013 (2008).

    Article  ADS  Google Scholar 

  8. Lubchenko, V. & Wolynes, P. G. Theory of structural glasses and supercooled liquids. Ann. Rev. Phys. Chem. 58, 235–266 (2007).

    Article  ADS  Google Scholar 

  9. Xia, X. & Wolynes, P. G. Fragilities of liquids predicted from the random first order transition theory of glasses. Proc. Natl Acad. Sci. USA 97, 2990–2994 (2000).

    Article  ADS  Google Scholar 

  10. Stevenson, J. D. & Wolynes, P. G. Thermodynamic–kinetic correlations in supercooled liquids: A critical survey of experimental data and predictions of the random first-order transition theory of glasses. J. Phys. Chem. B 109, 15093–15097 (2005).

    Article  Google Scholar 

  11. Lubchenko, V. & Wolynes, P. G. Theory of ageing in structural glasses. J. Chem. Phys. 121, 2852–2865 (2004).

    Article  ADS  Google Scholar 

  12. Xia, X. & Wolynes, P. G. Microscopic theory of heterogeneity and nonexponential relaxations in supercooled liquids. Phys. Rev. Lett. 86, 5526–5529 (2001).

    Article  ADS  Google Scholar 

  13. Dzero, M., Schmalian, J. & Wolynes, P. G. Replica theory for fluctuations of the activation barriers in glassy systems. Phys. Rev. B 80, 024204 (2009).

    Article  ADS  Google Scholar 

  14. Stevenson, J. D., Schmalian, J. & Wolynes, P. G. The shapes of cooperatively rearranging regions in glass-forming liquids. Nature Phys. 2, 268–274 (2006).

    Article  ADS  Google Scholar 

  15. Kirkpatrick, T. R., Thirumalai, D. & Wolynes, P. G. Scaling concepts for the dynamics of viscous liquids near an ideal glassy state. Phys. Rev. A 40, 1045–1054 (1989).

    Article  ADS  Google Scholar 

  16. Biroli, G., Bouchaud, J.-P., Cavagna, A., Grigera, T. S. & Verrocchio, P. Thermodynamic signature of growing amorphous order in glass-forming liquids. Nature Phys. 4, 771–775 (2008).

    Article  ADS  Google Scholar 

  17. Cammarota, C., Cavagna, A., Gradenigo, G., Grigera, T. S. & Verrocchio, P. Surface tension fluctuations and a new spinodal point in glass-forming liquids. Preprint at <http://arxiv.org/abs/0904.1522> (2009).

  18. Capaccioli, S., Ruocco, G. & Zamponi, F. Dynamically correlated regions and configurational entropy in supercooled liquids. J. Phys. Chem. B 112, 10652–10658 (2008).

    Article  Google Scholar 

  19. Stevenson, J. D., Walczak, A. M., Hall, R. W. & Wolynes, P. G. Constructing explicit magnetic analogies for the dynamics of glass forming liquids. J. Chem. Phys. 129, 194505 (2008).

    Article  ADS  Google Scholar 

  20. Adam, G. & Gibbs, J. H. On the temperature dependence of cooperative relaxation properties in glass-forming liquids. J. Chem. Phys. 43, 139–146 (1965).

    Article  ADS  Google Scholar 

  21. Bhattacharyya, S. M., Bagchi, B. & Wolynes, P. G. Facilitation, complexity growth, mode coupling, and activated dynamics in supercooled liquids. Proc. Natl Acad. Sci. USA 105, 16077–16082 (2008).

    Article  ADS  Google Scholar 

  22. Flory, P. J. Principles of Polymer Chemistry (Cornell Univ. Press, 1953).

    Google Scholar 

  23. Hagedorn, R. Statistical thermodynamics of strong interactions at high-energies. Nuovo Cimento. Suppl. 3, 147 (1965).

    Google Scholar 

  24. Plotkin, S. S. & Wolynes, P. G. Buffed energy landscapes: Another solution to the kinetic paradoxes of protein folding. Proc. Natl Acad. Sci. USA 100, 4417–4422 (2003).

    Article  ADS  Google Scholar 

  25. Redner, S. A Guide to First-Passage Processes (Cambridge Univ. Press, 2001).

    Book  Google Scholar 

  26. Wiedersich, J. et al. Fast and slow relaxation processes in glasses. J. Phys. Condens. Matter 11, A147–A156 (1999).

    Article  Google Scholar 

  27. Leutheusser, E. Dynamical model of the liquid–glass transition. Phys. Rev. A 29, 2765–2773 (1984).

    Article  ADS  Google Scholar 

  28. Gotze, W. & Sjogren, L. Relaxation processes in supercooled liquids. Rep. Prog. Phys. 55, 241–376 (1992).

    Article  ADS  Google Scholar 

  29. Singh, Y., Stoessel, J. P. & Wolynes, P. G. Hard-sphere glass and the density-functional theory of aperiodic crystals. Phys. Rev. Lett. 54, 1059–1062 (1985).

    Article  ADS  Google Scholar 

  30. Franz, S. Metastable states, relaxation times and free-energy barriers in finite-dimensional glassy systems. Europhys. Lett. 73, 492–498 (2006).

    Article  ADS  Google Scholar 

  31. Mezard, M. & Parisi, G. Statistical physics of structural glasses. J. Phys. Condens. Matter 12, 6655–6673 (2000).

    Article  ADS  Google Scholar 

  32. Blochowicz, T., Tschirwitz, C., Benkhof, S. & Rossler, E. A. Susceptibility functions for slow relaxation processes in supercooled liquids and the search for universal relaxation patterns. J. Chem. Phys. 118, 7544–7555 (2003).

    Article  ADS  Google Scholar 

  33. Blochowicz, T., Gainaru, C., Medick, P., Tschirwitz, C. & Rossler, E. A. The dynamic susceptibility in glass forming molecular liquids: The search for universal relaxation patterns II. J. Chem. Phys. 124, 134503 (2006).

    Article  ADS  Google Scholar 

  34. Döß, A., Hinze, G., Schiener, B., Hemberger, J. & Böhmer, R. Dielectric relaxation in the fragile viscous liquid state of toluene. J. Chem. Phys. 107, 1740–1743 (1997).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Support from NSF grant CHE0317017 and NIH grant 5R01GM44557 is gratefully acknowledged. Discussions on this topic with V. Lubchenko, H. Frauenfelder and J. Schmalian are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

The authors together conceived and implemented the theory and wrote the paper. J.D.S. implemented the numerical work.

Corresponding author

Correspondence to Peter G. Wolynes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stevenson, J., Wolynes, P. A universal origin for secondary relaxations in supercooled liquids and structural glasses. Nature Phys 6, 62–68 (2010). https://doi.org/10.1038/nphys1432

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys1432

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing