Non-equilibrium edge-channel spectroscopy in the integer quantum Hall regime


The study of heat transport has the potential to reveal new insights into the physics of mesoscopic systems. This is especially true of those that show the integer quantum Hall effect1, in which the robust quantization of Hall currents limits the amount of information that can be obtained from charge transport alone2. As a consequence, our understanding of gapless edge excitations in these systems is incomplete. Effective edge-state theory describes them as prototypical one-dimensional chiral fermions3,4—a simple picture that explains a large body of observations5 and suggests the use of quantum point contacts as electronic beam splitters to explore a variety of quantum mechanical phenomena6,7,8. However, this picture is in apparent disagreement with the prevailing theoretical framework, which predicts in most situations9 extra gapless edge modes10. Here, we present a spectroscopic technique that addresses the question of whether some of the injected energy is captured by the predicted extra states, by probing the distribution function and energy flow in an edge channel operated out-of-equilibrium. Our results show it is not the case and therefore that regarding energy transport, quantum point contacts do indeed behave as optical beam splitters. This demonstrates a useful new tool for heat transport and out-of-equilibrium experiments.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Experimental implementation of non-equilibrium edge-channel spectroscopy.
Figure 2: Equilibrium edge-channel spectroscopy and quantum-dot characterization.
Figure 3: Spectroscopy of an edge channel tuned out-of-equilibrium with the conductance of a QPC.
Figure 4: Spectroscopy of an edge channel tuned out-of-equilibrium with the voltage across a QPC.


  1. 1

    Klitzing, K. v., Dorda, G. & Pepper, M. New method for high-accuracy determination of the fine-structure constant based on quantized hall resistance. Phys. Rev. Lett. 45, 494–497 (1980).

  2. 2

    Fertig, H. A. A view from the edge. Physics 2, 15 (2009).

  3. 3

    Halperin, B. I. Quantized Hall conductance, current-carrying edge states, and the existence of extended states in a two-dimensional disordered potential. Phys. Rev. B 25, 2185–2190 (1982).

  4. 4

    Wen, X.-G. Theory of the edges states in fractional quantum Hall effects. Int. J. Mod. Phys B 6, 1711–1762 (1992).

  5. 5

    Büttiker, M. Absence of backscattering in the quantum Hall effect in multiprobe conductors. Phys. Rev. B 38, 9375–9389 (1988).

  6. 6

    Ionicioiu, R., Amaratunga, G. & Udrea, F. Quantum computation with ballistic electrons. Int. J. Mod. Phys. B 15, 125–133 (2001).

  7. 7

    Ji, Y. et al. An electronic Mach–Zehnder interferometer. Nature 422, 415–418 (2003).

  8. 8

    Samuelsson, P., Sukhorukov, E. V. & Büttiker, M. Two-particle Aharonov–Bohm effect and entanglement in the electronic Hanbury Brown–Twiss setup. Phys. Rev. Lett. 92, 026805 (2004).

  9. 9

    Chklovskii, D. B., Shklovskii, B. I. & Glazman, L. I. Electrostatics of edge channels. Phys. Rev. B 46, 4026–4034 (1992).

  10. 10

    Aleiner, I. L. & Glazman, L. I. Novel edge excitations of two-dimensional electron liquid in a magnetic field. Phys. Rev. Lett. 72, 2935–2938 (1994).

  11. 11

    Fève, G. et al. An on-demand coherent single-electron source. Science 316, 1169–1172 (2007).

  12. 12

    Neder, I. et al. Interference between two indistinguishable electrons from independent sources. Nature 448, 333–337 (2007).

  13. 13

    Roulleau, P. et al. Direct measurement of the coherence length of edge states in the integer quantum Hall regime. Phys. Rev. Lett. 100, 126802 (2008).

  14. 14

    Litvin, L. V., Tranitz, H. P., Wegscheider, W. & Strunk, C. Decoherence and single electron charging in an electronic Mach–Zehnder interferometer. Phys. Rev. B 75, 033315 (2007).

  15. 15

    Bieri, E. et al. Finite-bias visibility dependence in an electronic Mach–Zehnder interferometer. Phys. Rev. B 79, 245324 (2009).

  16. 16

    Tsui, D. C., Stormer, H. L. & Gossard, A. C. Two-dimensional magnetotransport in the extreme quantum limit. Phys. Rev. Lett. 48, 1559–1562 (1982).

  17. 17

    MacDonald, A. H., Yang, S. R. E. & Johnson, M. D. Quantum dots in strong magnetic fields: Stability criteria for the maximum density droplet. Aust. J. Phys. 46, 345–358 (1993).

  18. 18

    Chamon, C. de C. & Wen, X. G. Sharp and smooth boundaries of quantum Hall liquids. Phys. Rev. B 49, 8227–8241 (1994).

  19. 19

    Chang, A. M., Pfeiffer, L. N. & West, K. W. Observation of chiral Luttinger behavior in electron tunneling into fractional quantum Hall edges. Phys. Rev. Lett. 77, 2538–2541 (1996).

  20. 20

    Roddaro, S., Pellegrini, V., Beltram, F., Pfeiffer, L. N. & West, K. W. Particle-hole symmetric Luttinger liquids in a quantum Hall circuit. Phys. Rev. Lett. 95, 156804 (2005).

  21. 21

    Conti, S. & Vignale, G. Collective modes and electronic spectral function in smooth edges of quantum Hall systems. Phys. Rev. B 54, R14309–R14312 (1996).

  22. 22

    Han, J. H. & Thouless, D. J. Dynamics of compressible edge and bosonization. Phys. Rev. B 55, R1926–R1929 (1997).

  23. 23

    Yang, K. Field theoretical description of quantum Hall edge reconstruction. Phys. Rev. Lett. 91, 036802 (2003).

  24. 24

    Zülicke, U. & MacDonald, A. H. Periphery deformations and tunneling at correlated quantum Hall edges. Phys. Rev. B 60, 1837–1841 (1999).

  25. 25

    Pothier, H., Guéron, S., Birge, N. O., Esteve, D. & Devoret, M. H. Energy distribution function of quasiparticles in mesoscopic wires. Phys. Rev. Lett. 79, 3490–3493 (1997).

  26. 26

    Heiblum, M., Nathan, M. I., Thomas, D. C. & Knoedler, C. M. Direct observation of ballistic transport in GaAs. Phys. Rev. Lett. 55, 2200–2203 (1985).

  27. 27

    Granger, G., Eisenstein, J. P. & Reno, J. L. Observation of chiral heat transport in the quantum Hall regime. Phys. Rev. Lett. 102, 086803 (2009).

  28. 28

    Kouwenhoven, L. P. et al. in Mesoscopic Electron Transport Series E: Applied Sciences Vol. 345 (eds Sohn, L. L., Kouwenhoven, L. P. & Schön, G.) 105–214 (Kluwer Academic, 1997).

  29. 29

    van der Vaart, N. C. et al. Resonant tunneling through two discrete energy states. Phys. Rev. Lett. 74, 4702–4705 (1995).

  30. 30

    van Wees, B. J. et al. Anomalous integer quantum Hall effect in the ballistic regime with quantum point contacts. Phys. Rev. Lett. 62, 1181–1184 (1989).

Download references


The authors gratefully acknowledge discussions with M. Buttiker, P. Degiovanni, C. Glattli, P. Joyez, A. H. MacDonald, F. Portier, H. Pothier, P. Roche and G. Vignale. This work was supported by the ANR (ANR-05-NANO-028-03).

Author information

Experimental work and data analysis: C.A., H.l.S. and F.P.; nanofabrication: C.A. and F.P. with input from D.M.; heterojunction growth: A.C. and U.G.; theoretical analysis and manuscript preparation: F.P. with input from coauthors; project planning and supervision: F.P.

Correspondence to F. Pierre.

Supplementary information

Supplementary Information

Supplementary Information (PDF 538 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Altimiras, C., le Sueur, H., Gennser, U. et al. Non-equilibrium edge-channel spectroscopy in the integer quantum Hall regime. Nature Phys 6, 34–39 (2010).

Download citation

Further reading