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electromagnetism10, where the particle 
and current densities are spatial densities. 
They can, however, be represented as a 
tensor field, the so-called 4-current, and 
this makes the Maxwell theory compatible 
with Einstein’s theory of relativity. The 
same remark applies to all Yang–Mills 
gauge theories11,12, both quantum and 
non-quantum.

Now, because the velocity of light 
is finite, a given observer at each point 
P(t) on his or her world line — the path 
on which the observer travels trough 
spacetime — will never have access to 
the whole 3D region R(t), but only to the 
interior of their past lightcone; this is a 4D 
subdomain of the 4D spacetime, and its 
intersection with R(t) is reduced to P(t). As 
a consequence, considering fields defined 
over R(t) and densities with respect to a 3D 
volume element defined over R(t) may not 
seem really physical. Dunkel, Hänggi and 
Hilbert4 therefore suggest that R(t) should 
be replaced by the 3D past lightcone of the 
observer at point P(t). (This past lightcone 
reduces to R(t) when c tends to infinity, as 
is the case in the Galilean regime.)

This idea seems indeed reasonable 
and it has the advantage of being 
arguably more physically sound than 
the conventional procedure. But still, it 
remains to be seen where this suggestion 
will lead us. Among the open issues 
are the following: first, from a purely 
mathematical or physical perspective, there 
is no problem whatsoever with integrating 
on a lightcone. However, it is impossible 
to average on a lightcone in an intrinsic, 
observer-independent manner (this is 
because lightcones are so-called null 
surfaces13, on which the normal vectors are 
also tangent vectors — remember that the 
relativistic line-element is not necessarily 
positive). All lightcone averages therefore 
involve an extra structure, typically the 
choice of an observer, and it is not clear if 
this constitutes a severe limitation or not. 
Second, when following in the footsteps 
of Dunkel, Hänggi and Hilbert4, it is 
tempting to revisit all Yang–Mills theories 
and connect them with lightcone densities. 
Will this be possible? And will it have any 
influence on how we view quantization? 
The future will tell. ❐
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Swimming and flying are complicated 
processes to model, but at least the laws 
of fluid dynamics are known. In contrast, 
sand is a trickier medium to understand 
than water or air, because it can behave 
as a solid or as a fluid. Moreover, the 
presence of a ‘swimmer’ — such as the 
sand skink Plestiodon reynoldsi (pictured), 
seeking refuge from the heat of the 
Sun — changes the local properties of 
the sand, creating pockets of air and 
affecting the force chains between 
the granules. Consequently, there are 
no analytical equations of motion. To 
better understand the mechanism of 
swimming through a solid yet shifting 
medium, Takashi Shimada and colleagues 
have simulated the locomotion of 
a sand swimmer (Phys. Rev. E 80, 
020301; 2009), using a ‘push‑me‑pull‑
you’ model (pictured moving to the 
right) introduced by Joseph Avron and 
colleagues (New J. Phys. 7, 234; 2005).

In essence, the push‑me‑pull‑you 
model describes two disks connected 
by a spring. The disks inflate and shrink. 
To move forwards in fluid‑like sand, 
the smaller anterior disk inflates as 
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the spring lengthens. The initially fully 
inflated posterior disk acts as an anchor 
in solid‑like sand. Once the anterior disk 
is fully inflated, it then acts as the anchor 
while the posterior disk shrinks and 
moves forwards as the spring contracts. 
To complete the move, the posterior 
disk inflates again, ready for the next 
stroke. Thus, a sand swimmer must deal 
with solidification near the anchor and 
fluidization near the moving disk at the 
same time.

The simulation’s surprising result is 
that the optimal swimming frequency for 
maximum velocity is different from that 
for maximum efficiency. For example, if 
the swimmer moves too fast, the large 
voids created cause the swimmer to 
lose traction and slip. Hence the most 
efficient swimmer swims slowly. But 
move too slowly and the sand re‑
solidifies before any forward motion 
can be completed. Unexpectedly, the 
simulation also provides information on 
the fundamental time scales associated 
with granular packing.
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