Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Room-temperature ferromagnetism in graphite driven by two-dimensional networks of point defects

Abstract

Understanding the mechanism of ferromagnetism in carbon-based materials, which contain only s and p electrons in contrast to traditional ferromagnets based on 3d or 4f electrons, is challenging. Here, we demonstrate direct evidence for ferromagnetic order locally at defect structures in highly oriented pyrolytic graphite (HOPG) with magnetic force microscopy and in bulk magnetization measurements at room temperature. Magnetic impurities have been excluded as the origin of the magnetic signal. The observed ferromagnetism has been attributed to originate from localized electron states at grain boundaries of HOPG, forming two-dimensional arrays of point defects. The theoretical value of the magnetic ordering temperature based on weak interlayer coupling and/or magnetic anisotropy is comparable to the experimental value. The unusual chemical environment of defects bonded in graphitic networks can reveal the role of the s and p electrons, creating new routes for spin transport in carbon-based materials.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Correlation between topography, magnetic and electrostatic signals on a graphite surface.
Figure 2: Directional dependence of magnetization in HOPG.
Figure 3: Topography and differential conductance (dI/dV) spectra of grain boundaries in graphite.
Figure 4: Schematic models of two basics shapes of grain boundaries in graphite.

References

  1. Mombrú, A. W. et al. Multilevel ferromagnetic behavior of room-temperature bulk magnetic graphite. Phys. Rev. B 71, 100404(R) (2005).

    ADS  Article  Google Scholar 

  2. Esquinazi, P. et al. Induced magnetic ordering by proton irradiation in graphite. Phys. Rev. Lett. 91, 227201 (2003).

    ADS  Article  Google Scholar 

  3. Esquinazi, P. et al. Ferromagnetism in oriented graphite samples. Phys. Rev. B 66, 024429 (2002).

    ADS  Article  Google Scholar 

  4. Esquinazi, P. & Höhne, R. Magnetism in carbon structures. J. Magn. Magn. Mater. 290–291, 20–27 (2005).

    ADS  Article  Google Scholar 

  5. Makarova, T. L. et al. Magnetic carbon. Nature 413, 716–718 (2001); see however Retraction: Nature 440, 707 (2006).

  6. Rode, A. V. et al. Unconventional magnetism in all-carbon nanofoam. Phys. Rev. B 70, 054407 (2004).

    ADS  Article  Google Scholar 

  7. Ohldag, H. et al. π-electron ferromagnetism in metal-free carbon probed by soft X-ray dichroism. Phys. Rev. Lett. 98, 187204 (2007).

    ADS  Article  Google Scholar 

  8. Talapatra, S. et al. Irradiation-induced magnetism in carbon nanostructures. Phys. Rev. Lett. 95, 097201 (2005).

    ADS  Article  Google Scholar 

  9. Ovchinnikov, A. A. & Spector, V. N. Organic ferromagnets. Synth. Mater. 27, B615–B624 (1988).

    Article  Google Scholar 

  10. Park, N. et al. Magnetism in all-carbon nanostructures with negative Gaussian curvature. Phys. Rev. Lett. 91, 237204 (2003).

    ADS  Article  Google Scholar 

  11. Fujita, M., Wakabayashi, K., Nakada, K. & Kusakabe, K. Peculiar localized state at zigzag graphite edge. J. Phys. Soc. Jpn 65, 1920–1923 (1996).

    ADS  Article  Google Scholar 

  12. Son, Y.-W., Cohen, M. L. & Louie, S. G. Half-metallic graphene nanoribbons. Nature 444, 347–349 (2006).

    ADS  Article  Google Scholar 

  13. Yazyev, O. V. & Katsnelson, M. I. Magnetic correlations at graphene edges: Basis for novel spintronics devices. Phys. Rev. Lett. 100, 047209 (2008).

    ADS  Article  Google Scholar 

  14. Lehtinen, P. O. et al. Irradiation-induced magnetism in graphite: A density functional study. Phys. Rev. Lett. 93, 187202 (2004).

    ADS  Article  Google Scholar 

  15. Yazyev, O. V. & Helm, L. Defect-induced magnetism in graphene. Phys. Rev. B 75, 125408 (2007).

    ADS  Article  Google Scholar 

  16. Yazyev, O. V. Magnetism in disordered graphene and irradiated graphite. Phys. Rev. Lett. 101, 37203 (2008).

    ADS  Article  Google Scholar 

  17. Faccio, R. et al. Magnetism induced by single carbon vacancies in a three-dimensional graphitic network. Phys. Rev. B 77, 035416 (2008).

    ADS  Article  Google Scholar 

  18. Kopelevich, Y., Esquinazi, P., Torres, J. H. S. & Moehlecke, S. Ferromagnetic- and superconducting-like behavior of graphite. J. Low. Temp. Phys. 119, 691–702 (2000).

    ADS  Article  Google Scholar 

  19. Coey, J. M. D., Venkatesan, M., Fitzgerald, C. B., Douvalis, A. P. & Sanders, I. S. Ferromagnetism of a graphite nodule from the Canyon Diablo meteorite. Nature 420, 156–159 (2002).

    ADS  Article  Google Scholar 

  20. Červenka, J. & Flipse, C. F. J. The role of defects on the electronic structure of a graphite surface. J. Phys. Conf. Ser. 61, 190–194 (2007).

    ADS  Article  Google Scholar 

  21. Červenka, J. & Flipse, C. F. J. Structural and electronic properties of grain boundaries in graphite: Planes of periodically distributed point defects. Phys. Rev. B 79, 195429 (2009).

    ADS  Article  Google Scholar 

  22. Kebe, T. & Carl, A. Calibration of magnetic force microscopy tips by using nanoscale current-carrying parallel wires. J. Appl. Phys. 95, 775–792 (2004).

    ADS  Article  Google Scholar 

  23. Lu, Y. et al. Electrostatic force microscopy on oriented graphite surfaces: Coexistence of insulating and conducting behaviors. Phys. Rev. Lett. 97, 076805 (2006).

    ADS  Article  Google Scholar 

  24. Kobayashi, Y. et al. Observation of zigzag and armchair edges of graphite using scanning tunneling microscopy and spectroscopy. Phys. Rev. B 71, 193406 (2005).

    ADS  Article  Google Scholar 

  25. Niimi, Y. et al. Scanning tunneling microscopy and spectroscopy of the electronic local density of states of graphite surfaces near monoatomic step edges. Phys. Rev. B 73, 085421 (2006).

    ADS  Article  Google Scholar 

  26. Kobayashi, Y. et al. Edge state on hydrogen-terminated graphite edges investigated by scanning tunneling microscopy. Phys. Rev. B 73, 125415 (2006).

    ADS  Article  Google Scholar 

  27. Niimi, Y., Kambara, H., Matsui, T., Yoshioka, D. & Fukuyama, H. Phys. Rev. Lett. 97, 236804 (2006).

    ADS  Article  Google Scholar 

  28. Peres, N. M. R., Guinea, F. & Neto, A. H. C. Electronic properties of disordered two-dimensional carbon. Phys. Rev. B 73, 125411 (2006).

    ADS  Article  Google Scholar 

  29. Vozmediano, M. A. H., Lopez-Sancho, M. P., Stauber, T. & Guinea, F. Local defects and ferromagnetism in graphene layers. Phys. Rev. B 72, 155121 (2005).

    ADS  Article  Google Scholar 

  30. Wehling, T. O. et al. Local electronic signatures of impurity states in graphene. Phys. Rev. B 75, 125425 (2007).

    ADS  Article  Google Scholar 

  31. Kumazaki, H. & Hirashima, D. S. Tight-binding study of nonmagnetic-defect-induced magnetism in graphene. Fyz. Nizk. Temp. 34, 1025–1032 (2008).

    Google Scholar 

  32. Allenspach, R. Ultrathin films: Magnetism on the microscopic scale. J. Magn. Magn. Mater. 129, 160–185 (1994).

    ADS  Article  Google Scholar 

  33. Pedreschi, F., Sturm, J. M., O’Mahony, J. D. & Flipse, C. F. J. Magnetic force microscopy and simulations of colloidal iron nanoparticles. J. Appl. Phys. 94, 3446–3450 (2003).

    ADS  Article  Google Scholar 

  34. Wagoner, G. Spin resonance of charge carriers in graphite. Phys. Rev. 118, 647–653 (1960).

    ADS  Article  Google Scholar 

  35. Irkhin, V. Y., Katanin, A. A. & Katsnelson, M. I. Self-consistent spin-wave theory of layered Heisenberg magnets. Phys. Rev. B 60, 1082–1099 (1999).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

We are very grateful to R. Lavrijsen for SQUID measurements, P. H. A. Mutsaers for PIXE analysis and H. H. Brongersma for LEIS measurements. We thank B. Koopmans and H. J. M. Swagten for fruitful discussions and comments on the manuscript. This research was supported by Nanoned.

Author information

Authors and Affiliations

Authors

Contributions

J.C. carried out the experiments and wrote the paper. J.C. and C.F.J.F. designed and coordinated the experiments. M.I.K carried out the theoretical modelling. All authors discussed the results, analysed the data and commented on the manuscript.

Corresponding author

Correspondence to C. F. J. Flipse.

Supplementary information

Supplementary Information

Supplementary Information (PDF 328 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Červenka, J., Katsnelson, M. & Flipse, C. Room-temperature ferromagnetism in graphite driven by two-dimensional networks of point defects. Nature Phys 5, 840–844 (2009). https://doi.org/10.1038/nphys1399

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys1399

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing