Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Topology-driven quantum phase transitions in time-reversal-invariant anyonic quantum liquids

Abstract

Indistinguishable particles in two dimensions can be characterized by anyonic quantum statistics, which is more general than that of bosons or fermions. Anyons emerge as quasiparticles in fractional quantum Hall states and in certain frustrated quantum magnets. Quantum liquids of anyons show degenerate ground states, where the degeneracy depends on the topology of the underlying surface. Here, we present a new type of continuous quantum phase transition in such anyonic quantum liquids, which is driven by quantum fluctuations of the topology. The critical state connecting two anyonic liquids on surfaces with different topologies is reminiscent of the notion of a ‘quantum foam’ with fluctuations on all length scales. This exotic quantum phase transition arises in a microscopic model of interacting anyons for which we present an exact solution in a linear geometry. We introduce an intuitive physical picture of this model that unifies string nets and loop gases, and provide a simple description of topological quantum phases and their phase transitions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Phase transition in two dimensions.
Figure 2: Microscopic model.
Figure 3: The Fibonacci theory.
Figure 4: Phase transition in one dimension.
Figure 5: Excitations of the ladder model.
Figure 6: Energy spectra and phase diagram.
Figure 7: The D6 Dynkin diagram.
Figure 8: Excitations of the anyonic liquid.

Similar content being viewed by others

References

  1. Wen, X.-G. Vacuum degeneracy of chiral spin states in compactified space. Phys. Rev. B 40, 7387–7390 (1989).

    Article  ADS  Google Scholar 

  2. Laughlin, R. B. Anomalous quantum Hall effect: An incompressible quantum fluid with fractionally charged excitations. Phys. Rev. Lett. 50, 1395–1398 (1983).

    Article  ADS  Google Scholar 

  3. Wen, X.-G. & Niu, Q. Ground-state degeneracy of the fractional quantum Hall states in the presence of a random potential and on high-genus Riemann surfaces. Phys. Rev. B 41, 9377–9396 (1990).

    Article  ADS  Google Scholar 

  4. Moessner, R. & Sondhi, S. L. Resonating valence bond phase in the triangular lattice quantum dimer model. Phys. Rev. Lett. 86, 1881–1884 (2001).

    Article  ADS  Google Scholar 

  5. Balents, L., Fisher, M. P. A. & Girvin, S. M. Fractionalization in an easy-axis Kagome antiferromagnet. Phys. Rev. B 65, 224412 (2002).

    Article  ADS  Google Scholar 

  6. Ioffe, L. B. et al. Topologically protected quantum bits using Josephson junction arrays. Nature 415, 503–506 (2002).

    Article  Google Scholar 

  7. Levin, M. & Wen, X.-G. String-net condensation: A physical mechanism for topological phases. Phys. Rev. B 71, 045110 (2005).

    Article  ADS  Google Scholar 

  8. Kitaev, A. Fault-tolerant quantum computation by anyons. Ann. Phys. 303, 2–30 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  9. Kitaev, A. Anyons in an exactly solved model and beyond. Ann. Phys. 321, 2–111 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  10. Jackeli, G. & Khaliullin, G. Mott insulators in the strong spin–orbit coupling limit: From Heisenberg to a quantum compass and Kitaev models. Phys. Rev. Lett. 102, 017205 (2009).

    Article  ADS  Google Scholar 

  11. Kim, B. J. et al. Phase-sensitive observation of a spin-orbital Mott state in Sr2IrO4 . Science 323, 1329–1332 (2009).

    Article  ADS  Google Scholar 

  12. Leinaas, J. M. & Myrheim, J. On the theory of identical particles. Il Nuovo Cimento 37, 1–23 (1977).

    Google Scholar 

  13. Bouwknegt, P. & Schoutens, K. Exclusion statistics in conformal field theory—generalized fermions and spinons for level-1 WZW theories. Nucl. Phys. B 547, 501–537 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  14. Read, N. & Rezayi, E. Beyond paired quantum Hall states: Parafermions and incompressible states in the first excited Landau level. Phys. Rev. B 59, 8084–8092 (1999).

    Article  ADS  Google Scholar 

  15. Slingerland, J. K. & Bais, F. A. Quantum groups and non-Abelian braiding in quantum Hall systems. Nucl. Phys. B 612, 229–290 (2001).

    Article  ADS  MathSciNet  Google Scholar 

  16. Büchler, H. P., Micheli, A. & Zoller, P. Three-body interactions with cold polar molecules. Nature Phys. 3, 726–731 (2007).

    Article  ADS  Google Scholar 

  17. Fendley, P. Topological order from quantum loops and nets. Ann. Phys. 323, 3113–3136 (2008).

    Article  ADS  MathSciNet  Google Scholar 

  18. Wheeler, J. A. Geons. Phys. Rev. 97, 511–536 (1955).

    Article  ADS  MathSciNet  Google Scholar 

  19. Wheeler, J. A. On the nature of quantum geometrodynamics. Ann. Phys. 2, 604–614 (1957).

    Article  ADS  Google Scholar 

  20. Friedan, D., Qiu, Z. & Shenker, S. Conformal invariance, unitarity, and critical exponents in two dimensions. Phys. Rev. Lett. 52, 1575–1578 (1985).

    Article  ADS  MathSciNet  Google Scholar 

  21. Cappelli, A., Itzykson, C. & Zuber, J. B. Modular invariant partition functions in two dimensions. Nucl. Phys. B 280, 445–465 (1987).

    Article  ADS  MathSciNet  Google Scholar 

  22. Pasquier, V. Lattice derivation of modular invariant partition functions on the torus. J. Phys. A 20, L1229–L1238 (1987).

    Article  ADS  MathSciNet  Google Scholar 

  23. Pasquier, V. Two-dimensional critical systems labelled by Dynkin diagrams. Nucl. Phys. B 285, 162–172 (1987).

    Article  ADS  MathSciNet  Google Scholar 

  24. Temperley, N. & Lieb, E. Relations between percolation and colouring problem and other graph-theoretical problems associated with regular planar lattices—some exact results for percolation problem. Proc. R. Soc. Lond. A 322, 251–280 (1971).

    Article  ADS  MathSciNet  Google Scholar 

  25. Feiguin, A. et al. Interacting anyons in topological quantum liquids: The golden chain. Phys. Rev. Lett. 98, 160409 (2007).

    Article  ADS  Google Scholar 

  26. Gils, C. et al. Collective states of interacting anyons, edge states, and the nucleation of topological liquids. Phys. Rev. Lett. 103, 070401 (2009).

    Article  ADS  Google Scholar 

  27. Haldane, F. D. M. ‘Fractional statistics’ in arbitary dimensions: A generalization of the Pauli principle. Phys. Rev. Lett. 67, 937–940 (1991).

    Article  ADS  MathSciNet  Google Scholar 

  28. Freedman, M., Nayak, C. & Shtengel, K. Extended Hubbard model with ring exchange: A route to a non-Abelian topological phase. Phys. Rev. Lett. 94, 066401 (2005).

    Article  ADS  Google Scholar 

  29. Fradkin, E. & Shenker, S. H. Phase diagrams of lattice gauge theories with Higgs fields. Phys. Rev. D 19, 3682–3697 (1979).

    Article  ADS  Google Scholar 

  30. Trebst, S., Werner, P., Troyer, M., Shtengel, K. & Nayak, C. Breakdown of a topological phase: Quantum phase transition in a loop gas with tension. Phys. Rev. Lett. 98, 070602 (2007).

    Article  ADS  Google Scholar 

  31. Fendley, P. & Fradkin, E. Realizing non-Abelian statistics in time-reversal-invariant systems. Phys. Rev. B 72, 024412 (2005).

    Article  ADS  Google Scholar 

  32. Freedman, M., Nayak, C., Shtengel, K., Walker, K. & Wang, Z. A class of P,T-invariant topological phases of interacting electrons. Ann. Phys. 310, 428–492 (2004).

    Article  ADS  MathSciNet  Google Scholar 

  33. Greenblatt, R. L., Aizenman, M. & Lebowitz, J. L. Rounding of first order transitions in low-dimensional quantum systems with quenched disorder. Preprint at <http://arxiv.org/abs/0907.2419v1> (2009).

  34. Moore, G. & Seiberg, N. Classical and quantum conformal field theory. Commun. Math. Phys. 123, 177–254 (1989).

    Article  ADS  MathSciNet  Google Scholar 

  35. Kirillov, A. N. & Reshetikhin, N. Yu. Infinite Dimensional Lie Algebras and Groups (ed. Kac, V. G., World Scientific, 1988).

    Google Scholar 

  36. Albuquerque, A. F. et al. The ALPS project release 1.3: Open-source software for strongly correlated systems. J. Magn. Magn. Mater. 310, 1187–1193 (2007).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank M. Freedman, X.-G. Wen and P. Fendley for stimulating discussions. Our numerical simulations were based on the ALPS libraries36. A.W.W.L. was supported, in part, by NSF DMR-0706140.

Author information

Authors and Affiliations

Authors

Contributions

C.G., S.T. and M.T. contributed to the numerical work. C.G., A.K., A.W.W.L and Z.W. contributed to the analytical solution. All authors contributed to the development of the general picture presented in this manuscript.

Corresponding author

Correspondence to Simon Trebst.

Supplementary information

Supplementary Information

Supplementary Information (PDF 500 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gils, C., Trebst, S., Kitaev, A. et al. Topology-driven quantum phase transitions in time-reversal-invariant anyonic quantum liquids. Nature Phys 5, 834–839 (2009). https://doi.org/10.1038/nphys1396

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys1396

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing