Ultracold quantum gases in optical lattices

Article metrics

Abstract

Artificial crystals of light, consisting of hundreds of thousands of optical microtraps, are routinely created by interfering optical laser beams. These so-called optical lattices act as versatile potential landscapes to trap ultracold quantum gases of bosons and fermions. They form powerful model systems of quantum many-body systems in periodic potentials for probing nonlinear wave dynamics and strongly correlated quantum phases, building fundamental quantum gates or observing Fermi surfaces in periodic potentials. Optical lattices represent a fast-paced modern and interdisciplinary field of research.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Optical lattice potentials formed by superimposing two or three orthogonal standing waves.
Figure 2: Optical lattice potentials.
Figure 3: Adiabatic mapping of crystal momentum onto free-space momentum of an atom.
Figure 4: Nonlinear dynamics for a BEC in a double-well system.
Figure 5: Dynamical instability of a BEC in a periodic potential.
Figure 6: Transition from a superfluid to a Mott insulator.
Figure 7: Observing Fermi surfaces.
Figure 8: Quantum noise correlations in atom clouds released from an optical lattice.

References

  1. 1

    Fisher, M. P. A., Weichman, P. B., Grinstein, G. & Fisher, D. S. Boson localization and the superfluid-insulator transition. Phys. Rev. B 40, 546–570 (1989).

  2. 2

    Jaksch, D., Bruder, C., Cirac, J. I., Gardiner, C. W. & Zoller, P. Cold bosonic atoms in optical lattices. Phys. Rev. Lett. 81, 3108–3111 (1998).

  3. 3

    Greiner, M., Mandel, O., Esslinger, T., Hänsch, T. W. & Bloch, I. Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms. Nature 415, 39–44 (2002).

  4. 4

    Orzel, C., Tuchman, A. K., Fenselau, M. L., Yasuda, M. & Kasevich, M. A. Squeezed states in a Bose-Einstein condensate. Science 291, 2386–2389 (2001).

  5. 5

    Girardeau, M. Relationship between systems of impenetrable bosons and fermions in one dimension. J. Math. Phys. 1, 516–523 (1960).

  6. 6

    Paredes, B. et al. Tonks–Girardeau gas of ultracold atoms in an optical lattice. Nature 429, 277–281 (2004).

  7. 7

    Kinoshita, T., Wenger, T. & Weiss, D. S. Observation of a one-dimensional Tonks-Girardeau gas. Science 305, 1125–1128 (2004).

  8. 8

    deMarco, B. & Jin, D. S. Onset of Fermi degeneracy in a trapped atomic gas. Science 285, 1703–1706 (1999).

  9. 9

    Truscott, A. G., Strecker, K. E., McAlexander, W. I., Partridge, G. B. & Hulet, R. G. Observation of Fermi pressure in a gas of trapped atoms. Science 291, 2570–2572 (2001).

  10. 10

    Regal, C., Greiner, M. & Jin, D. S. Observation of resonance condensation of fermionic atom pairs. Phys. Rev. Lett. 92, 040403 (2004).

  11. 11

    Chin, C. et al. Observation of the pairing gap in a strongly interacting Fermi gas. Science 305, 1128–1130 (2004).

  12. 12

    Zwierlein, M. W., Abo-Shaeer, J. R., Schirotzek, A., Schunck, C. H. & Ketterle, W. Vortices and superfluidity in a strongly interacting Fermi gas. Nature 435, 1047–1051 (2005).

  13. 13

    Bloch, I. Quantum gases in optical lattices. Phys. World 17, 25–29 (2004).

  14. 14

    Rom, T. et al. State selective production of molecules in optical lattices. Phys. Rev. Lett. 93, 073002 (2004).

  15. 15

    Ryu, C. et al. Raman-induced oscillation between an atomic and a molecular quantum gas. Prepint at http://arxiv.org/abs/cond-mat/0508201 (2005).

  16. 16

    Feynman, R. P. Quantum mechanical computers. Opt. News 11, 11–20 (1985).

  17. 17

    Feynman, R. P. Quantum mechanical computers. Found. Phys. 16, 507–531 (1986).

  18. 18

    Grimm, R., Weidemüller, M. & Ovchinnikov, Y. B. Optical dipole traps for neutral atoms. Adv. At. Mol. Opt. Phys. 42, 95–170 (2000).

  19. 19

    Petsas, K. I., Coates, A. B. & Grynberg, G. Crystallography of optical lattices. Phys. Rev. A 50, 5173–5189 (1994).

  20. 20

    Santos, L. et al. Atomic quantum gases in Kagomé lattices. Phys. Rev. Lett. 93, 030601 (2004).

  21. 21

    Kastberg, A., Phillips, W. D., Rolston, S. L. & Spreeuw, R. J. C. Adiabatic cooling of cesium to 700 nK in an optical lattice. Phys. Rev. Lett. 74, 1542–1545 (1995).

  22. 22

    Greiner, M., Bloch, I., Mandel, O., Hänsch, T. W. & Esslinger, T. Bose-Einstein condensates in 1D and 2D optical lattices. Appl. Phys. B 73, 769–772 (2001).

  23. 23

    Bloch, I. & Greiner, M. Exploring quantum matter with ultracold atoms in optical lattices. Adv. At. Mol. Phys. (in the press).

  24. 24

    Köhl, M., Moritz, H., Stöferle, T., Günter, K. & Esslinger, T. Fermionic atoms in a 3D optical lattice: Observing Fermi-surfaces, dynamics and interactions. Phys. Rev. Lett. 94, 080403 (2004).

  25. 25

    Anderson, B. P. & Kasevich, M. A. Macroscopic quantum interference from atomic tunnel arrays. Science 282, 1686–1689 (1998).

  26. 26

    Cataliotti, F. S. et al. Josephson junction arrays with Bose-Einstein condensates. Science 293, 843–846 (2001).

  27. 27

    Albiez, M. et al. Direct observation of tunneling and nonlinear self-trapping in a single bosonic Josephson junction. Phys. Rev. Lett. 95, 010402 (2005).

  28. 28

    Josephson, B. D. Possible new effects in superconductive tunnelling. Phys. Lett. 1, 251–253 (1962).

  29. 29

    Likharev, K. K. Superconducting weak links. Rev. Mod. Phys. 51, 101–159 (1979).

  30. 30

    Pereverzev, S. V., Loshak, A., Backhaus, S., Davis, J. C. & Packard, R. E. Quantum oscillations between two weakly coupled reservoirs of superfluid 3He. Nature 388, 449–451 (1997).

  31. 31

    Sukhatme, K., Mukharsky, Y., Chui, T. & Pearson, D. Observation of the ideal Josephson effect in superfluid 4He. Nature 411, 280–283 (2001).

  32. 32

    Fallani, L. et al. Observation of dynamical instability for a Bose-Einstein condensate in a moving 1D optical lattice. Phys. Rev. Lett. 93, 140406 (2004).

  33. 33

    Wu, B. & Niu, Q. Landau and dynamical instabilities of the superflow of Bose-Einstein condensates in optical lattices. Phys. Rev. A 64, 061603 (2001).

  34. 34

    Smerzi, A., Trombettoni, A., Kevrekidis, P. G. & Bishop, A. R. Dynamical superfluid-insulator transition in a chain of weakly coupled Bose-Einstein condensates. Phys. Rev. Lett. 89, 170402 (2002).

  35. 35

    Pitaevskii, L. P. & Stringari, S. Bose-Einstein Condensation (Oxford Science, Oxford, 2003).

  36. 36

    Zurek, W. H. Cosmological experiments in superfluid helium? Nature 317, 505–508 (1985).

  37. 37

    Zurek, W. H., Dorner, U. & Zoller, P. Dynamics of a quantum phase transition. Phys. Rev. Lett. 95, 105701 (2005).

  38. 38

    Stöferle, T., Moritz, H., Schori, C., Köhl, M. & Esslinger, T. Transition from a strongly interacting 1D superfluid to a Mott insulator. Phys. Rev. Lett. 92, 130403 (2004).

  39. 39

    Fertig, C. D. et al. Strongly inhibited transport of a degenerate 1D Bose gas in a lattice. Phys. Rev. Lett. 94, 120403 (2005).

  40. 40

    Polkovnikov, A. & Wang, D. -W. Effect of quantum fluctuations on the dipolar motion of Bose-Einstein condensates in optical lattices. Phys. Rev. Lett. 93, 070401 (2004).

  41. 41

    Laburthe-Tolra, B. et al. Observation of reduced three-body recombination in a correlated 1D degenerate Bose gas. Phys. Rev. Lett. 92, 190401 (2004).

  42. 42

    Lieb, E. H. & Liniger, W. Exact analysis of an interacting Bose gas. The general solution and the ground state. Phys. Rev. B 130, 1605–1616 (1963).

  43. 43

    Giamarchi, T. Quantum Physics in One Dimension (Oxford Science, Oxford, 2004).

  44. 44

    Ott, H. et al. Collisionally induced transport in periodic potentials. Phys. Rev. Lett. 92, 160601 (2004).

  45. 45

    Pezzè, L. et al. Insulating behavior of a trapped Fermi gas. Phys. Rev. Lett. 93, 120401 (2004).

  46. 46

    Kuklov, A. & Svistunov, B. Counterflow superfluidity of two-species ultracold atoms in a commensurate optical lattice. Phys. Rev. Lett. 90, 100401 (2003).

  47. 47

    Kuklov, A., Prokof'ev, N. V. & Svistunov, B. Commensurate two-component bosons in an optical lattice: Ground state phase diagram. Phys. Rev. Lett. 92, 050402 (2004).

  48. 48

    Paredes, B. & Cirac, J. I. From Cooper pairs to Luttinger liquids with bosonic atoms in optical lattices. Phys. Rev. Lett. 90, 150402 (2003).

  49. 49

    Recati, A., Fedichev, P. O., Zwerger, W., von Delft, J. & Zoller, P. Atomic quantum dots coupled to a reservoir of a superfluid Bose-Einstein condensate. Phys. Rev. Lett. 94, 040404 (2005).

  50. 50

    Micheli, A., Daley, A. J., Jaksch, D. & Zoller, P. Single atom transistor in a 1D optical lattice. Phys. Rev. Lett. 93, 140408 (2004).

  51. 51

    Duan, L. -M., Demler, E. & Lukin, M. D. Controlling spin exchange interactions of ultracold atoms in an optical lattice. Phys. Rev. Lett. 91, 090402 (2003).

  52. 52

    Altman, E., Hofstetter, W., Demler, E. & Lukin, M. D. Phase diagram of two-component bosons on an optical lattice. New J. Phys. 5, 113 (2003).

  53. 53

    Roth, R. & Burnett, K. Ultracold bosonic atoms in two-color disordered optical superlattices. J. Opt. B 5, S50–S54 (2003).

  54. 54

    Roth, R. & Burnett, K. Phase diagram of bosonic atoms in two-color superlattices. Phys. Rev. A 68, 023604 (2003).

  55. 55

    Damski, B., Zakrzwewski, J., Santos, L., Zoller, P. & Lewenstein, M. Atomic Bose and Anderson glasses in optical lattices. Phys. Rev. Lett. 91, 080403 (2003).

  56. 56

    Sanpera, A., Kantian, A., Sanchez-Palencia, L., Zakrzwewski, J. & Lewenstein, M. Atomic Fermi-Bose mixtures in inhomogeneous and random lattices: From Fermi glass to quantum spin glass and quantum percolation. Phys. Rev. Lett. 93, 040401 (2004).

  57. 57

    Lye, J. E. et al. A Bose-Einstein condensate in a random potential. Phys. Rev. Lett. 95, 070401 (2005).

  58. 58

    Anderson, P. W. The resonating valence bond state in La2CuO4 and superconductivity. Science 235, 1196–1198 (1987).

  59. 59

    Anderson, P. W. et al. The physics behind high-temperature superconducting cuprates: the 'plain vanilla' version of RVB. J. Phys. Cond. Mat. 16, R755–R769 (2004).

  60. 60

    Hofstetter, W., Cirac, J. I., Zoller, P., Demler, E. & Lukin, M. D. High-temperature superfluidity of fermionic atoms in optical lattices. Phys. Rev. Lett. 89, 220407 (2002).

  61. 61

    Roati, G. et al. Atom interferometry with trapped Fermi gases. Phys. Rev. Lett. 92, 230402 (2004).

  62. 62

    Büchler, H. P. & Blatter, G. Phase separation of atomic Bose-Fermi mixtures in an optical lattice. Phys. Rev. A 69, 063603 (2004).

  63. 63

    Albus, A., Illuminati, F. & Eisert, J. Mixtures of bosonic and fermionic atoms in optical lattices. Phys. Rev. A 68, 023606 (2003).

  64. 64

    Roth, R. & Burnett, K. Quantum phases of atomic boson-fermion mixtures in optical lattices. Phys. Rev. A 69, 021601(R) (2004).

  65. 65

    Lewenstein, M., Santos, L., Baranov, M. A. & Fehrmann, H. Atomic Bose-Fermi mixtures in an optical lattice. Phys. Rev. Lett. 92, 050401 (2004).

  66. 66

    Altman, E., Demler, E. & Lukin, M. D. Probing many-body states of ultracold atoms via noise correlations. Phys. Rev. A 70, 013603 (2004).

  67. 67

    Greiner, M., Regal, C. A., Stewart, J. T. & Jin, D. S. Probing pair-correlated fermionic atoms through correlations in atom shot noise. Phys. Rev. Lett. 110401 (2005).

  68. 68

    Fölling, S. et al. Spatial quantum noise interferometry in expanding ultracold atomic gases. Nature 434, 481–484 (2005).

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bloch, I. Ultracold quantum gases in optical lattices. Nature Phys 1, 23–30 (2005) doi:10.1038/nphys138

Download citation

Further reading