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Watts8 showed how so-called generating 
functions, commonly used in statistical 
physics, allow us to compactly enumerate 
over all configurations and to calculate 
properties of this ensemble of networks, 
opening up for mathematical analysis new 
types of systems, such as networks with 
directed edges, in which the relationships 
between nodes are not symmetric. To be 
valid, generating-function approaches 
have so far required that networks be 
tree-like, meaning there are no closed 
loops and, hence, no triangles. However, 
Newman4 now introduces a combinatorial 
approach extending generating-function 
techniques to include small-scale structures. 
He explicitly incorporates triangles by 
considering two properties for each node, 
namely a specified number of both single 
edges and edges involved in triangles, and 
shows how to construct the expected joint 
distribution of single edges and triangles 
per node. This joint distribution can easily 
be measured in a real-world network and 
input into Newman’s calculations, even 
if there are correlations between the two 
properties, as is often the case.

The ‘tree-like assumptions’ of previous 
approaches overestimate the probability 
of finding long chains of connected nodes. 
With clustering, many edges must go 
towards closing the third legs of triangles, 

reinforcing local connectivity (Fig. 1). 
Newman calculates a number of resulting 
consequences that could affect important 
network phenomena such as the spread 
of diseases or ideas, or the resilience of 
network connectivity (that is, whether a 
network maintains large-scale connectivity 
as its nodes fail or are deliberately removed). 
For example, the presence of triangles 
significantly lowers the disease virulence 
required for a large-scale outbreak of an 
infection to occur. Generating-function 
formulations with tree-like connectivity 
have previously been used to model the 
spread of real viruses over human contact 
networks9. The modifications introduced by 
Newman4 should enable refined calculations 
with more relevant predictions.

Newman’s framework extends, in 
principle, to enumerating over more 
complex structures, such as combinations 
of triangles, squares and hexagons, and also 
to accounting for directed edges. Hopefully, 
this is a step towards unifying mathematical 
formulations of random graphs with 
‘bottom up’ numerical approaches, such 
as the identification of motifs in systems 
biology10 and the exponential random-
graph models used in social-network 
analysis and statistics11, which allow us 
to numerically generate the ensemble of 
random graphs consistent with specified 

structural properties. (Note that as used 
in statistics, the term ‘clustering’ refers not 
to transitivity but to a method of dividing 
data into subgroups of similar elements.) 
One important issue remains: before acting 
on the predictions made using random-
network models, we must still ask how the 
properties of an ensemble of networks relate 
to a particular individual realization of a 
real-world network. ❐
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Time as a concept has intrigued 
philosophers for, well, a long time. Is it 
intrinsic to the Universe, or is it a human 
construct that helps us to describe the 
world around us in terms of equations? To 
the question “what did God do before the 
beginning of time?”, St Augustine is said to 
have quipped that He was preparing hell 
for those who dared to ask such questions. 
But ask such questions physicists must, 
no matter how dire the ever-lasting 
consequences. So here we go…

The idea that time flows in one 
direction is intuitive: we get older, 
greyer, balder and, no matter how much 
we may wish it, we can never go back. 
Physicists define this forward direction 
in the language of the second law of 
thermodynamics: in a closed system 
entropy never decreases — the Universe 
moves forward in time towards disorder. 
The problem is that the fundamental 
equations that we use to describe our 
world are not sensitive to this direction; 

Forward and back
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they work equally well with time going 
forwards or backwards. This is Loschmidt’s 
paradox, named after the nineteenth-
century Austrian physicist and chemist who 
said that irreversible processes should not 
emerge from time-symmetric dynamics.

Lorenzo Maccone now proposes a 
way to reconcile our everyday notion 
of time with quantum mechanics 
(Phys. Rev. Lett. (in the press); preprint at 
<http://arxiv.org/abs/0802.0438v2>, 
2008). His basic idea is that changes 

that involve an increase or a decrease 
in entropy can both take place, but the 
decreasing cases do not leave any lasting 
trace: “the only physical evolutions we 
see in our past, and which can then be 
studied, are those where entropy has 
not decreased.”

The caveat for the second law of 
thermodynamics is that all systems must 
be uncorrelated. However, correlations 
between us, as an observer, and other 
systems do exist even if we are not 
aware of them. A process that leads to 
a decrease in correlation would lead 
to a reduction in entropy; however, the 
observer would not be aware of them, 
as memories are correlations and would 
have been erased. Maccone notes that 
even a super-observer who can follow 
all correlations will not see an increase 
in entropy. St Augustine would not 
be impressed!
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