Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Antiferromagnetic criticality at a heavy-fermion quantum phase transition

Abstract

The interpretation of the magnetic phase diagrams of strongly correlated electron systems remains controversial. In particular, the physics of quantum phase transitions, which occur at zero temperature, is still enigmatic. Heavy-fermion compounds are textbook examples of quantum criticality, as doping, or the application of pressure or a magnetic field can lead to a quantum phase transition between a magnetically ordered state and a paramagnetic regime. A central question concerns the microscopic nature of the critical quantum fluctuations. Are they antiferromagnetic or of local origin? Here we demonstrate, using inelastic neutron scattering experiments, that the quantum phase transition in the heavy-fermion system Ce1−xLaxRu2Si2 is controlled by fluctuations of the antiferromagnetic order parameter. At least for this heavy-fermion family, the Hertz–Millis–Moriya spin fluctuation approach seems to be a sound basis for describing the quantum antiferromagnetic–paramagnetic instability.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic phase diagram of heavy-fermion systems.
Figure 2: Inelastic neutron scattering spectra of Ce1−xLaxRu2Si2.
Figure 3: Static susceptibility and relaxation rate at antiferromagnetic and local wave vectors of Ce1−xLaxRu2Si2.
Figure 4: x-variation of the magnetic order parameter and magnetic phase diagram of Ce1−xLaxRu2Si2.

Similar content being viewed by others

References

  1. Lonzarich, G. G., Bernhoeft, N. R. & Paul, D. M. Spin density fluctuations in magnetic metals. Physica B 156–157, 699–705 (1989).

    Article  ADS  Google Scholar 

  2. Moriya, T. Spin Fluctuations in Itinerant Electron Magnetism (Springer, 1985).

    Book  Google Scholar 

  3. Continentino, M. A. Quantum Scaling in Many-Body Systems (World Scientific, 2001).

    Book  Google Scholar 

  4. Sachdev, S. Quantum magnetism and criticality. Nature Phys. 4, 173–185 (2008).

    Article  ADS  Google Scholar 

  5. Flouquet, J. On the heavy-fermion road. Prog. Low Temp. Phys. 15, 139–281 (2005).

    Article  Google Scholar 

  6. von Löhneysen, H., Rosch, A., Vojta, M. & Wölfle, P. Fermi-liquid instabilities at magnetic quantum phase transitions. Rev. Mod. Phys. 79, 1015–1075 (2007).

    Article  ADS  Google Scholar 

  7. Hertz, J. A. Quantum critical phenomena. Phys. Rev. B 14, 1165–1184 (1976).

    Article  ADS  Google Scholar 

  8. Millis, A. J. Effect of a non-zero temperature on quantum critical points in itinerant fermion systems. Phys. Rev. B 48, 7183–7196 (1993).

    Article  ADS  Google Scholar 

  9. Moriya, T. & Takimoto, T. Anomalous properties around magnetic instability in heavy electron systems. J. Phys. Soc. Jpn 64, 960–969 (1995).

    Article  ADS  Google Scholar 

  10. Stewart, G. R. Non-Fermi-liquid behavior in d- and f-electron metals. Rev. Mod. Phys. 73, 797–855 (2001).

    Article  ADS  Google Scholar 

  11. Kambe, S., Flouquet, J. & Hargreaves, T. E. The effect of spin fluctuations on thermal properties in strongly correlated fermion systems. J. Low Temp. Phys. 108, 383–405 (1997).

    Article  ADS  Google Scholar 

  12. Kadowaki, H., Sato, M. & Kawarazaki, S. Spin fluctuation in heavy fermion CeRu2Si2 . Phys. Rev. Lett. 92, 097204 (2004).

    Article  ADS  Google Scholar 

  13. Si, Q., Rabello, S., Ingersent, K. & Smith, J. L. Locally critical quantum phase transitions in strongly correlated metals. Nature 413, 804–808 (2001).

    Article  ADS  Google Scholar 

  14. Coleman, P., Pépin, C., Qimiao, Si & Ramazashvili, R. How do Fermi liquids get heavy and die? J. Phys. Condens. Matter 13, R723–R738 (2001).

    Article  ADS  Google Scholar 

  15. Gegenwart, P., Si, Q. & Steglich, F. Quantum criticality in heavy-fermion metals. Nature Phys. 4, 186–197 (2008).

    Article  ADS  Google Scholar 

  16. Coleman, P. & Schofield, A. J. Quantum criticality. Nature 433, 226–229 (2005).

    Article  ADS  Google Scholar 

  17. Schröder, A. et al. Onset of antiferromagnetism in heavy-fermion metals. Nature 407, 351–355 (2000).

    Article  ADS  Google Scholar 

  18. Stockert, O., v Löhneysen, H., Rosch, A., Pyka, N. & Loewenhaupt, M. Two-dimensional fluctuations at the quantum-critical point of CeCu6−xAux . Phys. Rev. Lett. 80, 5627–5630 (1998).

    Article  ADS  Google Scholar 

  19. Aeppli, G. et al. Wave-vector- and magnetic-field-dependent spin fluctuations in the heavy-fermion system CeCu6 . Phys. Rev. Lett. 57, 122–125 (1986).

    Article  ADS  Google Scholar 

  20. Kuramoto, Y. Momentum dependence of magnetic response in heavy-fermion systems. Solid State Commun. 63, 467–470 (1987).

    Article  ADS  Google Scholar 

  21. Béal-Monod, M. T. & Lawrence, J. M. Paramagnon picture of the low-temperature susceptibility of some intermediate-valence compounds. Phys. Rev. B 21, 5400–5409 (1980).

    Article  ADS  Google Scholar 

  22. Quezel, S. et al. Magnetic ordering in CexLa1−xRu2Si2 solid solutions. J. Magn. Magn. Mater. 76–77, 403–404 (1988).

    Article  ADS  Google Scholar 

  23. Haen, P. & Fukuhara, T. Study of the crossover from ferromagnetic to antiferromagnetic ground state in CeRu2(Ge0.7Si0.3)2 by resistivity measurements under pressure. Physica B 312–313, 437–439 (2002).

    Article  ADS  Google Scholar 

  24. Mignot, J. M. et al. Incommensurabilities and metamagnetism in the heavy-fermion alloys (Ce0.8La0.2)Ru2Si2 and CeRu2(Si0.9Ge0.1)2 . Physica B 171, 357–361 (1991).

    Article  ADS  Google Scholar 

  25. Watanabe, K. et al. Pressure-induced instability of magnetic order in Kondo-lattice system: Neutron diffraction study of the pseudo-binary alloy system Ce(Ru0.90Rh0.10)2(Si1−yGey)2 . J. Phys. Soc. Jpn 72, 1751–1757 (2003).

    Article  ADS  Google Scholar 

  26. Fisher, R. A. et al. The magnetic instability in the heavy fermion compounds Ce1−xLaxRu2Si2 . J. Low Temp. Phys. 84, 49–86 (1991).

    Article  ADS  Google Scholar 

  27. Lacerda, A., de Visser, A., Haen, P., Lejay, P. & Flouquet, J. Thermal properties of heavy-fermion CeRu2Si2 . Phys. Rev. B 40, 8759–8768 (1989).

    Article  ADS  Google Scholar 

  28. Haen, P., Lapierre, F., Voiron, J. & Fouquet, J. Vanishing of magnetic order in Ce0.8La0.2Ru2Si2 under pressure. J. Phys. Soc. Jpn 65 (Suppl. B), 27–35 (1996).

    Google Scholar 

  29. Haen, P. et al. Magnetic properties of the Ce1−xLaxRu2Si2 system. J. Phys. Colloques 49, C8-757–758 (1988).

    Google Scholar 

  30. Taillefer, L., Flouquet, J. & Lonzarich, G. G. Normal and superconducting phases of heavy fermions. Physica B 169, 257–270 (1991).

    Article  ADS  Google Scholar 

  31. Aoki, H. et al. De Haas-van Alphen effect study of CeRu2Si2 . Physica B 206–207, 26–28 (1995).

    Article  ADS  Google Scholar 

  32. Matsumoto, Y. et al. Continuous evolution of Fermi surface properties above metamagnetic transitions in CexLa1−xRu2Si2 . J. Phys. Soc. Jpn 77, 053703 (2008).

    Article  ADS  Google Scholar 

  33. Knafo, W. et al. Anomalous scaling behavior of the dynamical spin susceptibility of Ce0.925La0.075Ru2Si2 . Phys. Rev. B 70, 174401 (2004).

    Article  ADS  Google Scholar 

  34. Knafo, W. & Raymond, S. Artificial scaling laws of the dynamical magnetic susceptibility in heavy-fermion systems. Phys. Lett. A 341, 251–254 (2005).

    Article  ADS  Google Scholar 

  35. Regnault, L. P., Erkelens, W. A. C., Rossat-Mignod, J., Lejay, P. & Flouquet, J. Neutron scattering study of the heavy-fermion compound CeRu2Si2 . Phys. Rev. B 38, 4481–4487 (1988).

    Article  ADS  Google Scholar 

  36. Doniach, S. The Kondo lattice and weak antiferromagnetism. Physica B 91, 231–234 (1977).

    Article  Google Scholar 

  37. Knafo, W. et al. Low energy spin fluctuations in the heavy fermion compound Ce0.925La0.075Ru2Si2 . Physica B 359–361, 38–40 (2005).

    Article  ADS  Google Scholar 

  38. Uemura, Y. J. et al. Phase separation and suppression of critical dynamics at quantum phase transitions of MnSi and (Sr1−xCax)RuO3 . Nature Phys. 3, 29–35 (2007).

    Article  ADS  Google Scholar 

  39. Amato, A. et al. Ultrasmall-moment static magnetism in CeRu2Si2 . Phys. Rev. B 50, 619–622 (1994).

    Article  ADS  Google Scholar 

  40. Payer, K., Haen, P., Laurant, J.-M., Mignot, J.-M. & Flouquet, J. Resistivity of CeRu2Si2 under high pressure. Physica B 186–188, 503–506 (1993).

    Article  ADS  Google Scholar 

  41. Anderson, P. W. A Fermi sea of heavy electrons (a Kondo lattice) is never a Fermi liquid. Preprint at <http://arxiv.org/abs/0810.0279v1> (2008).

  42. Moriya, T. & Ueda, K. Spin fluctuations and high temperature superconductivity. Adv. Phys. 49, 555–606 (2000).

    Article  ADS  Google Scholar 

  43. Monthoux, P., Pines, D. & Lonzarich, G. G. Superconductivity without phonons. Nature 450, 1177–1183 (2007).

    Article  ADS  Google Scholar 

  44. Pfleiderer, C. Superconducting phases of f-electron compounds. Preprint at <http://arxiv.org/abs/0905.2625v1> (2009).

Download references

Acknowledgements

We acknowledge B. Vettard, J. Prévitali and J. M. Mignot for support during experiments. We also thank P. Haen, F. Lapierre, B. Fåk, H. Yamagami, M. Lavagna, C. Pépin and M. Continentino for useful discussions.

Author information

Authors and Affiliations

Authors

Contributions

The crystals were grown by P.L., the experiments were carried out by W.K. and S.R. and the analysis was carried out by W.K., S.R. and J.F.

Corresponding author

Correspondence to W. Knafo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Knafo, W., Raymond, S., Lejay, P. et al. Antiferromagnetic criticality at a heavy-fermion quantum phase transition. Nature Phys 5, 753–757 (2009). https://doi.org/10.1038/nphys1374

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys1374

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing