Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Locking electron spins into magnetic resonance by electron–nuclear feedback


Quantum information processing requires accurate coherent control of quantum-mechanical two-level systems, but is hampered in practice by their coupling to an uncontrolled environment. For electron spins in IIIV quantum dots, the random environment is mostly given by the nuclear spins in the quantum-dot host material; they collectively act on the electron spin through the hyperfine interaction, much like a random magnetic field. Here we show that the same hyperfine interaction can be harnessed such that partial control of the normally uncontrolled environment becomes possible. In particular, we observe that the electron-spin-resonance frequency remains locked to the frequency of an applied microwave magnetic field, even when the external magnetic field or the excitation frequency are changed. The nuclear field thereby adjusts itself such that the electron-spin-resonance condition remains satisfied. General theoretical arguments indicate that this spin-resonance locking might be accompanied by a significant reduction of the randomness in the nuclear field.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: ESR locking during frequency sweeps.
Figure 2: ESR locking during magnetic-field sweeps.
Figure 3: ESR locking dependence on excitation power, frequency and sweep rate.
Figure 4: Pump–probe measurement of the relaxation of the nuclear-spin polarization.
Figure 5: Nuclear-spin pumping curves.


  1. Hanson, R., Kouwenhoven, L. P., Petta, J. R., Tarucha, S. & Vandersypen, L. M. K. Spins in few-electron quantum dots. Rev. Mod. Phys. 79, 1217–1265 (2007).

    ADS  Article  Google Scholar 

  2. Khaetskii, A. V., Loss, D. & Glazman, L. Electron spin decoherence in quantum dots due to interaction with nuclei. Phys. Rev. Lett. 88, 186802 (2002).

    ADS  Article  Google Scholar 

  3. Merkulov, I. A., Efros, Al. L. & Rosen, M. Electron spin relaxation by nuclei in semiconductor quantum dots. Phys. Rev. B 65, 205309 (2002).

    ADS  Article  Google Scholar 

  4. Petta, J. R. et al. Coherent manipulation of coupled electron spins in semiconductor quantum dots. Science 309, 2180–2184 (2005).

    ADS  Article  Google Scholar 

  5. Koppens, F. H. L., Nowack, K. C. & Vandersypen, L. M. K. Spin echo of a single electron spin in a quantum dot. Phys. Rev. Lett. 100, 236802 (2008).

    ADS  Article  Google Scholar 

  6. Greilich, A. et al. Mode locking of electron spin coherences in singly charged quantum dots. Science 313, 341–345 (2006).

    ADS  Article  Google Scholar 

  7. Koppens, F. H. L. et al. Driven coherent oscillations of a single electron spin in a quantum dot. Nature 442, 766–771 (2006).

    ADS  Article  Google Scholar 

  8. Burkard, G., Loss, D. & DiVincenzo, D. P. Coupled quantum dots as quantum gates. Phys. Rev. B 59, 2070–2078 (1999).

    ADS  Article  Google Scholar 

  9. Klauser, D., Coish, W. A. & Loss, D. Nuclear spin state narrowing via gate-controlled Rabi oscillations in a double quantum dot. Phys. Rev. B 73, 205302 (2006).

    ADS  Article  Google Scholar 

  10. Giedke, G., Taylor, J. M., D’Alessandro, D., Lukin, M. D. & Imamoğlu, A. Quantum measurement of a mesoscopic spin ensemble. Phys. Rev. A 74, 032316 (2006).

    ADS  Article  Google Scholar 

  11. Stepanenko, D., Burkard, G., Giedke, G. & Imamoğlu, A. Enhancement of electron spin coherence by optical preparation of nuclear spins. Phys. Rev. Lett. 96, 136401 (2006).

    ADS  Article  Google Scholar 

  12. Coish, W. A. & Loss, D. Hyperfine interaction in a quantum dot: Non-Markovian electron spin dynamics. Phys. Rev. B 70, 195340 (2004).

    ADS  Article  Google Scholar 

  13. Witzel, W. M. & Das Sarma, S. Quantum theory for electron spin decoherence induced by nuclear spin dynamics in semiconductor quantum computer architectures: Spectral diffusion of localized electron spins in the nuclear solid-state environment. Phys. Rev. B 74, 035322 (2006).

    ADS  Article  Google Scholar 

  14. Greilich, A. et al. Collective single mode precession of electron spins in a quantum dot ensemble. Phys. Rev. B 79, 201305(R) (2009).

    ADS  Article  Google Scholar 

  15. Reilly, D. J. et al. Suppressing spin qubit dephasing by nuclear state preparation. Science 321, 817–821 (2008).

    ADS  Article  Google Scholar 

  16. Ono, K. & Tarucha, S. Nuclear-spin-induced oscillatory current in spin-blockaded quantum dots. Phys. Rev. Lett. 92, 256803 (2004).

    ADS  Article  Google Scholar 

  17. Koppens, F. H. L. et al. Control and detection of singlet–triplet mixing in a random nuclear field. Science 309, 1346–1350 (2005).

    ADS  Article  Google Scholar 

  18. Reilly, D. J. et al. Measurement of temporal correlations of the Overhauser field in a double quantum dot. Phys. Rev. Lett. 101, 236803 (2008).

    ADS  Article  Google Scholar 

  19. Foletti, S. et al. Dynamic nuclear polarization using a single pair of electrons. Preprint at <> (2008).

  20. Baugh, J., Kitamura, Y., Ono, K. & Tarucha, S. Large nuclear Overhauser fields detected in vertically coupled double quantum dots. Phys. Rev. Lett. 99, 096804 (2007).

    ADS  Article  Google Scholar 

  21. Tartakovskii, A. I. et al. Nuclear spin switch in semiconductor quantum dots. Phys. Rev. Lett. 98, 026806 (2007).

    ADS  Article  Google Scholar 

  22. Braun, P.-F. et al. Bistability of the nuclear polarization created through optical pumping in In1−xGaxAs quantum dots. Phys. Rev. B 74, 245306 (2006).

    ADS  Article  Google Scholar 

  23. Maletinsky, P., Lai, C. W., Badolato, A. & Imamoğlu, A. Nonlinear dynamics of quantum dot nuclear spins. Phys. Rev. B 75, 035409 (2007).

    ADS  Article  Google Scholar 

  24. Ono, K., Austing, D. G., Tokura, Y. & Tarucha, S. Current rectification by Pauli exclusion in a weakly coupled double quantum dot system. Science 297, 1313–1317 (2002).

    ADS  Article  Google Scholar 

  25. Koppens, F. H. L. et al. Detection of single electron spin resonance in a double quantum dot. J. Appl. Phys. 101, 081706 (2007).

    ADS  Article  Google Scholar 

  26. Danon, J. et al. Multiple nuclear polarization states in a double quantum dot. Phys. Rev. Lett. 103, 046601 (2009).

    ADS  Article  Google Scholar 

  27. Danon, J. & Nazarov, Yu. V. Nuclear tuning and detuning of the electron spin resonance in a quantum dot: Theoretical consideration. Phys. Rev. Lett. 100, 056603 (2008).

    ADS  Article  Google Scholar 

  28. Rudner, M. S. & Levitov, L. S. Electrically driven reverse Overhauser pumping of nuclear spins in quantum dots. Phys. Rev. Lett. 99, 246602 (2007).

    ADS  Article  Google Scholar 

  29. Laird, E. A. et al. Hyperfine-mediated gate-driven electron spin resonance. Phys. Rev. Lett. 99, 246601 (2007).

    ADS  Article  Google Scholar 

Download references


We thank F. R. Braakman, P. C. de Groot, R. Hanson, M. Laforest, L. R. Schreiber, G. A. Steele and S.-C. Wang for help and discussions, and R. Schouten, A. van der Enden, R. G. Roeleveld and P. van Oossanen for technical support. This work is supported by the ‘Stichting voor Fundamenteel Onderzoek der Materie (FOM)’ and the ‘Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO)’.

Author information

Authors and Affiliations



I.T.V., K.C.N and F.H.L.K. performed the experiment, I.T.V., K.C.N., F.H.L.K. and L.M.K.V were responsible for the project planning, J.D. and Y.V.N. developed the theory, all authors contributed to the interpretation of the data and I.T.V., K.C.N, J.D. and L.M.K.V wrote the manuscript.

Corresponding author

Correspondence to Lieven M. K. Vandersypen.

Supplementary information

Supplementary Information

Supplementary Information (PDF 442 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Vink, I., Nowack, K., Koppens, F. et al. Locking electron spins into magnetic resonance by electron–nuclear feedback. Nature Phys 5, 764–768 (2009).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing