Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Is information the key?

Quantum information science has brought us novel means of calculation and communication. But could its theorems hold the key to understanding the quantum world at its most profound level? Do the truly fundamental laws of nature concern — not waves and particles — but information?

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Assign classical bits 0 and 1 to, for example, the ground and excited states of an atom, and the power of quantum computation is unleashed.

References

  1. 1

    Einstein, A. Ann. Phys. 17, 132–148 (1905).

    Google Scholar 

  2. 2

    Fuchs, C. A. Preprint at <http://arxiv.org/quant-ph/0205039> (2002).

  3. 3

    Feynman, R. Int. J. Theoret. Phys. 21, 467–488 (1982).

    Google Scholar 

  4. 4

    Deutsch, D. Proc. R. Soc. Lond. A 400, 97–117 (1985).

    ADS  Google Scholar 

  5. 5

    Shor, P. W. SIAM J. Computing 26, 1484–1509 (1997).

    MathSciNet  Google Scholar 

  6. 6

    Turing, A. M. Proc. Lond. Math. Soc. 42, 230–265 (1936).

    Google Scholar 

  7. 7

    Wiesner, S. ACM Sigact News 15(1), 78–88 (1983).

    Google Scholar 

  8. 8

    Bennett, C. H. & Brassard, G. in Proc. IEEE Int. Conf. Computers, Systems and Signal Processing 175–179 (IEEE, New York, 1984).

    Google Scholar 

  9. 9

    Bennett, C. H., Brassard, G. & Ekert, A. K. Sci. Am. 267, 50–57 (October 1992).

    Google Scholar 

  10. 10

    Shannon, C. E. Bell System Tech. J. 28, 656–715 (1949).

    MathSciNet  Google Scholar 

  11. 11

    Bennett, C. H. & Brassard, G. ACM Sigact News 20(4), 78–82 (1989).

    Google Scholar 

  12. 12

    Deutsch, D. New Scientist 1694, 25–26 (9 December 1989).

  13. 13

    Mayers, D. Phys. Rev. Lett. 78, 3414–3417 (1997).

    ADS  Google Scholar 

  14. 14

    Lo, H. -K. & Chau, H. F. Phys. Rev. Lett. 78, 3410–3413 (1997).

    ADS  Google Scholar 

  15. 15

    Fuchs, C. A. Preprint at <http://arxiv.org/quant-ph/0105039> 83–84 (2001).

  16. 16

    Smolin, J. Quant. Inf. Comp. 5, 161–169 (2005).

    Google Scholar 

  17. 17

    Clifton, R., Bub, J. & Halvorson, H. Found. Phys. 33, 1561–1591 (2003).

    MathSciNet  Google Scholar 

  18. 18

    Buhrman, H., Cleve, R. & Wigderson, A. in Proc. 30th Annu. ACM Symp. Theory of Computing 63–68 (ACM, New York, 1998).

    Google Scholar 

  19. 19

    van Dam, W. Preprint at <http://arxiv.org/quant-ph/0501159> (2005).

  20. 20

    Popescu, S. & Rohrlich, D. Found. Phys. 24, 379–385 (1994).

    ADS  MathSciNet  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Brassard, G. Is information the key?. Nature Phys 1, 2–4 (2005). https://doi.org/10.1038/nphys134

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing