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Enhanced paraconductivity-like fluctuations in the
radiofrequency spectra of ultracold Fermi atoms
Pierbiagio Pieri*, Andrea Perali and Giancarlo Calvanese Strinati

In gases of ultracold Fermi atoms, the crossover from
Bardeen–Cooper–Schrieffer superconductivity to Bose–
Einstein condensation1–3 can be realized by continuously
varying the attraction between fermions of different species4.
In this context, radiofrequency spectroscopy5–7 provides a
microscopic probe to infer the nature of fermionic pairing. In
the regime of strong interaction, the pairing affects a wide
temperature range, which includes the critical temperature Tc,
in analogy to the pseudogap physics for high-temperature su-
perconductors. Here, we establish a direct connection between
the theory of radiofrequency spectra for ultracold fermions
above Tc and the theory of paraconductivity fluctuations
in superconductors. Our calculations compare favourably to
available experimental radiofrequency spectra, and demon-
strate that the role of fluctuations for ultracold fermions is
considerably enhanced with respect to superconductors. In
addition, we illustrate how to extract from the spectra an
energy scale associated with pairing and relate it to a universal
quantity recently introduced for Fermi gases8.

It is widely appreciated at present that ultracold Fermi atoms
represent ideal systems for deepening our understanding of
condensed-matter systems, especially as far asmany-body quantum
physics is concerned. This is because the inter-particle interaction
and species populations can be fine-controlled and tuned almost
at will, in such a way that the system Hamiltonian is precisely
known over a wide parameter range. As experimental techniques
are able to provide diverse and accurate data, major theoretical
efforts can be justified to attempt detailed comparison with
experiments, particularly for those aspects that have remained
unsettled in condensed matter.

In this respect, radiofrequency experiments5–7 (especially in
their tomographic version) provide fertile ground for exploring
complementary aspects related to excitation gaps and pairing
fluctuations, both below and above Tc for the transition to the
superfluid phase in these neutral systems. A crucial aspect here is the
occurrence of several hyperfine levels, which are split by a magnetic
field and exhibit mutual Fano–Feshbach resonances that strongly
amplify the two-body interaction when the field is varied4. The
hyperfine levels act as components of a (hyper) spin and a spin-flip
is generated by the radiofrequency transition, so that a dynamical
(two-particle) spin-correlation function is effectively measured by
radiofrequency spectra9.

Below Tc, theoretical interpretation of these spectra has revealed
a competition between pairing-gap effects in the initial state of the
transition and final-state effects, which tend to push the oscillator
strength towards opposite sides of the spectrum10. In this case,
the presence of a well-developed pairing gap at low temperature
makes a Bardeen–Cooper–Schrieffer random-phase approximation
(BCS-RPA) approach for response functions sufficiently accurate to
reproduce the experimental features10.
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When the temperature increases across Tc, the pairing gap is
replaced by pairing fluctuations, and precursor effects of pairing
appear in the normal phase above Tc. These effects manifest
themselves at the simplest level in the single-particle spectral
function with a depression of the spectral weight (pseudogap)
at low frequencies for small enough wave vectors (the effect
being amplified when approaching the Bose–Einstein condensation
(BEC) limit of the BCS–BEC crossover11). In high-temperature
cuprate superconductors (where pairing is competing with other
kinds of ordering), photoemission (angle-resolved photoemission
spectroscopy) experiments have extensively been used to unravel
the nature of the pseudogap in single-particle excitations12.
Recently, attempts to disentangle single-particle excitations from
radiofrequency (two-particle) spectra have also been made for
ultracold Fermi gases13, by resolving the wave vector of the
photo-excited fermions.

Pairing fluctuations in the normal phase above Tc are known to
affect the two-particle response of superconductors. In particular,
for superconducting thin films the possibility of fluctuational
creation of Cooper pairs has been shown to enhance their
conductivity, an effect known as ‘paraconductivity’ from the
work of Aslamazov and Larkin14 (AL). Another source of
interaction of fermions with fluctuating Cooper pairs stems from
the extra contribution to the conductivity found by Maki15
and Thompson16 (MT). The AL and MT contributions have
been detected experimentally to produce small changes to the
normal conductivity, which can be amplified by reducing the
dimensionality17. Whereas the AL contribution to the conductivity
can be obtained theoretically by a time-dependent generalization
of the Ginzburg–Landau equations18, accounting for the MT
contribution requires one to introduce finite-temperature Feynman
diagrams for the current response function, a technique that
yields also a third relevant contribution known as density-of-states
(DOS) renormalization19.

Here, we calculate the corresponding fluctuation contributions
to the dynamical spin-correlation function associatedwith radiofre-
quency spectra, by using finite-temperature Feynman diagrams
in the normal phase. Our calculation reveals that, even in three
dimensions, the role of pairing fluctuations can be drastically
enhanced for the radiofrequency spin-correlation function of ultra-
cold Fermi atomswith respect to the current-correlation function of
superconductors. The results of our calculation compare favourably
to the available radiofrequency experimental data for Fermi gases
with balanced populations under various coupling conditions.

The differences between the current- and radiofrequency spin-
correlation functions originate from the different nature of the
coupling to the external probe, the involvement of a third spin
component and the wider coupling range that can be explored
by means of Fano–Feshbach resonances with Fermi atoms. Apart
from these differences (which yet make theMT contribution vanish
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Figure 1 |Allowed coupling values for 6Li in the ((kFai)−1,(kFaf)−1)
plane. Radiofrequency experiments realized with ultracold 6Li atoms
correspond to the three following combinations of scattering lengths: (I) for
(ai= a12,af= a13), (II) for (ai= a13,af= a12) and (III) for (ai= a13,af= a23).
Using the values of these scattering lengths versus the magnetic field given
in ref. 29 and the experimentally accessible values of the Fermi wave vector
kF= (3π2n)1/3, where n is the (total) density at the trap centre (typically,
kF≈ 2.7× 10−4a0

−1, where a0 is the Bohr radius), we construct the three
stripes labelled (I), (II) and (III) inside which radiofrequency spectra can be
collected, the widths of which correspond to an estimated 40% variation
on the values of kF. The symbols correspond to the three different sets of
tomographic radiofrequency spectra reported in ref. 7. The green area
indicates the region 2 . |(kFai)−1

−(kFaf)−1
| where it is possible to extract

the quantity ∆∞ (see the main text) from the high-frequency tail of the
radiofrequency spectra.

identically for the radiofrequency spin-correlation function), the
topological structure of the Feynman diagrams for the AL and
DOS contributions remains the same for both calculations (see
the Methods section).

For the radiofrequency spectra of interest here, two spin
components (α and β) are initially equally populated whereas a
third (γ ) is empty. For a transition that flips β into γ , the relevant
scattering lengths are then aαβ for the initial (i) and aαγ for the final
(f) state. In our calculation, the DOS contribution contains only
pairing fluctuations related to aαβ (initial-state effects), whereas the
AL contribution contains in addition pairing fluctuations related to
aαγ (final-state effects)—see the Methods section. For this reason,
we refer to aαβ as ai and to aαγ as af. Experiments have been
able to explore different combinations of these spin components,
thereby enlarging the accessible coupling ranges. Figure 1 reports
the corresponding locations of the possible experimental coupling
values for 6Li in the ((kFai)−1, (kFaf)−1) plane, where kF is the
Fermi wave vector.

Comparisons between the results of our numerical calculations
and the experimental spectra for 6Li are reported in Fig. 2, resulting
in quite good agreement between theory and experiments. Recall
that, in the absence of pairing fluctuations, a single delta-spike at
zero frequency would absorb the whole spectra weight (the value of
which is dictated by a sum rule for the spectral area10 and is not
changed by further inclusion of ai and af). In all panels, the left
peak is associated with the presence of a localized (bound) final
state, which typically absorbs a spectral weight comparable to the
right peak. The latter originates from continuum transitions and
comprises the high-frequency tail. For these reasons, the final-state
effects associated with the AL contribution have an essential role in
all cases (see also Supplementary Fig. S1). Nonetheless, when the
bound and continuum peaks are sufficiently apart, the continuum
part of the spectra seems to be only slightly modified by the
inclusion of final-state effects provided the peak heights (obtained
by DOS alone and by DOS plus AL) are brought to coincide.
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Figure 2 | Comparison between theoretical and experimental
radiofrequency spectra. a–d, The experimental spectra from Figs. 4a–d of
ref. 7 (black squares) compared to our calculations, with the inclusion of
pairing fluctuations due to ai (red dotted curves: DOS contribution) and
with the extra inclusion of pairing fluctuations due to af (blue solid curves:
DOS plus AL contributions). The experimental spectra (tomographic for
a–c, and trap-averaged for d) span approximately the temperature range
(0.7 Tc−Tc), and reveal a smooth evolution across Tc. The theoretical
spectra are calculated for a homogeneous system in the normal phase at a
temperature T (= 1.1Tc) slightly above Tc. In a–c, the bound (left) and
continuum (right) peaks of the experimental spectra were independently
normalized to the corresponding peak heights, whereas in d a single
normalization was used7. We have adopted the same procedure for the
comparison. Our calculation provides for the relative weight of the bound
peak the values 59% (a), 44% (b) and 33% (c). In a, the discrepancy
between the positions of the experimental and theoretical bound peaks can
be accounted for by a molecular multi-channel calculation30. The couplings
in a–c correspond to those of Figs. 4a–c of ref. 7, whereas the coupling in d
is obtained from the value of kF at the trap centre, estimated from the
trap-averaged value k′F given in Fig. 4d of ref. 7.

These considerations justify a posteriori the procedure adopted
in ref. 7 to fit the continuum part of the experimental spectra
disregarding final-state effects.
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Figure 3 | Procedure for extracting ∆∞ from the tail of the
radiofrequency spectra. a, Theoretical radiofrequency spectra normalized
to the weight A of the continuum peak and multiplied by (ω/EF)3/2. The
blue solid curve is for (kFaf)−1

= 2.6 (with A= 56%) and the red dotted
curve is for (kFaf)−1

= 3.2 (with A=63%), and (kFai)−1
=0 and T= 1.1Tc in

both cases. The horizontal line corresponds to the value ∆∞=0.73EF

obtained at the same temperature. b, An analogous procedure is applied to
the corresponding experimental spectra, by normalizing the area of the
continuum peak to unity. The blue open squares are from Fig. 2b of ref. 7
with (kFaf)−1

= 2.6 and the red filled circles are from Supplementary Fig. S1
of ref. 7 with (kFaf)−1

= 3.2, and (kFai)−1
=0 and the temperature is below

(but close to) Tc in both cases. The data yield approximately the value
0.25±0.10 for the height of the plateau, from which we get
∆∞/EF=0.69+0.12

−0.16 with no input from theory.

In Fig. 2, the experimental spectra taken slightly below Tc have
been compared with our calculations done slightly above Tc. This
comparison is meaningful because the DOS and AL contributions
considered here contain non-critical fluctuations with short spatial
range, and thus smoothly evolve across Tc. When lowering the
temperature further, however, the BCS-RPA response from the
BCS mean field becomes important, as was shown in ref. 10
where account was given of experimental data for T . 0.5Tc. The
BCS-RPA approach applies, in particular, to T =0, where it reduces
to that of ref. 20. The pairing fluctuations contained in the DOS
plus AL contributions thus replace at high-enough temperature
those contained in the BCS-RPA response at low temperature. For
this reason, the BCS-RPA response when applied to temperatures
above Tc (see ref. 21) fails to even qualitatively account for the
radiofrequency spectra (see Supplementary Fig. S2).

Experimentally, the motivation for exploring radiofrequency
spectroscopy with ultracold Fermi atoms5 stemmed from the

q

k + q

k

P ¬ k’P ¬ k

k k

q

k’ + q

k’ 

¬k’

γ

α

α

α

γ
α

β β

β

β β

γ γ

γ

β

γ

k + q

k

q

P ¬ k

β β

α α

β β

α α

= + + ...
α

β

αα

ββ

¬k ¬k” ¬k’¬k

k + P k’ + P k” + P k’ + Pk + P

q

Γαβ (P)

Γαβ (P)

Γαβ (P)

Γαγ (P + q)

Σβ (k) =

a

b

c

Γαβ

Γαγ

Γαβ

Γαβ

β

Figure 4 |Diagrammatic representation of the spin-correlation function
above Tc. a, DOS contribution where the fermionic β–β single-particle
propagator (upper line) is dressed by the self-energy Σβ , which includes
pairing fluctuations of the initial state β with its mate α through the pairing
propagator Γαβ . b, AL contribution that includes, in addition, pairing
fluctuations of the final state γ with the mate α left behind. c, Self-energy
Σβ and pairing propagator Γαβ between spins α and β in the initial state
(Γαγ between spins α and γ in the final state is similarly obtained). The
solid and dashed lines stand for fermionic single-particle propagators and
interactions, respectively, and the labels attached to the end points identify
the relevant spins. All diagrams are drawn in four-momentum space. Only
the single-particle propagator β–β in a is dressed by self-energy insertions.

expectation of extracting the value of a pairing gap directly from
the (continuum part of the) spectra. This would be possible within
a BCS description at low temperature, because in this case the
continuum edge occurs at ∆2/(2EF), where ∆ is the BCS gap
parameter and EF = k2F/(2m) is the Fermi energy (m being the
fermion mass). Such a simplified picture, however, does not apply
to the unitarity regime about (kFai)−1= 0 owing to strong-coupling
effects in the initial and/or final states of the transition. Accordingly,
no procedure has been suggested so far for extracting from the
radiofrequency spectra an energy scale associated with pairing
interaction in systems with balanced populations22.

The present analysis allows us to identify such an energy
scale, when the bound and continuum peaks of a radiofrequency
spectrum are sufficiently far apart as in the experiments of ref. 7
or, more generally, when 2 . |(kFai)−1− (kFaf)−1|, corresponding
to the green area in Fig. 1. In this case, there exists a window
on the high-frequency side of the continuum peak where the
radiofrequency signal behaves according to B (ω/EF)−3/2 with
B = A (3/25/2) (∆∞/EF)2. Here, A stands for the area of the
continuum peak once the total area of the radiofrequency spectrum
is taken to be unity. Typically, this frequency window extends
between a few times EF and (ma2f )

−1, past which the spectral tail
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is dominated by final-state effects and decays as ω−5/2 (such that, if
final-state effects were totally neglected (af=0) the ω−3/2 tail would
extend up to infinity). The above expression is written in analogy
with the high-frequency behaviour of the radiofrequency signal
within the BCS approximation, in which∆ appears in place of∆∞.
Physically, although∆ is amean-field quantity, the energy scale∆∞
results from adding pairing fluctuations beyond the mean field and
thus remains meaningful even above the critical temperature. The
energy scale ∆∞ can be further related to the asymptotic behaviour
C/k4 of the wave-vector distribution function n(k), where C is
the ‘contact intensity’ introduced in ref. 8, which enters several
quantities of a Fermi gas in a universal way23,24. On general grounds,
we identifyC= (m∆∞)2 (see theMethods section).

In Fig. 3a, the theoretical radiofrequency spectra (once multi-
plied by (ω/EF)3/2) identify a plateau beginning at ω ' 5EF, the
height of which is (3/25/2) (∆∞/EF)2 according to the above argu-
ment. This height is compared with the horizontal line, obtained
by the value of ∆∞/EF resulting from our independent calculation
of the contact intensity C through n(k). In Fig. 3b, we attempt the
same procedure for the experimental radiofrequency spectra. Even
though the signal-to-noise ratio seems too low to draw definite
conclusions, a numerical estimate for ∆∞/EF can still be extracted
within some uncertainty related to the determination of the value
of the plateau level (the presence of which is expected on theoretical
grounds). Future experiments with improved statistics on the wings
of the radiofrequency spectra could unambiguously identify the
value of this plateau, thus mapping out the value of ∆∞ (and
therefore the contact intensity C of ref. 8) in extended temperature
and coupling ranges.

The results obtained here demonstrate the important role of
pairing fluctuations for strongly interacting Fermi systems, which
smoothly evolve across Tc owing to their short spatial range. In this
respect, our results emphasize how local (pairing) fluctuations get
amplified by the strong interaction, irrespective of the presence of
critical fluctuations. This is also reflected in the wide temperature
range well above the critical temperature where the response of
the Fermi system is influenced by fluctuations. At the same time,
our calculations, being motivated by the need to get a valuable
comparison between theory and experiments in systems such as
ultracold fermions for which the Hamiltonian is known, have
contributed to advance the current state-of-the-art of quantum
many-body physics.

Methods
Radiofrequency spectrum and the spin-correlation function. The radiofrequency
spectrum is obtained theoretically within linear-response theory as:

δ〈I (ωth)〉=−2g 2
∫

drdr′Im{Π R
βγ (r,r

′
;ωth)}

where g is the coupling constant of the atomic (β→ γ ) transition and
Π R
βγ (r,r

′
;ωth) is the Fourier transform of the retarded correlation function

Π R
βγ (r,r

′
;t− t ′)=−iθ(t− t ′)〈[Bβγ (r,t ),B

†
βγ (r′,t ′)]〉 taken at the shifted frequency

ωth=ωRF+µβ−µγ with respect to the frequency of the radiofrequency fields, ωRF

(we set h̄= 1 throughout). Here, B†
βγ (r)=ψ†

γ (r)ψβ (r) is the transition operator in
terms of the field operators ψβ/γ at the spatial point r, µβ and µγ are the chemical
potentials for the initial (equally populated) and final (empty) levels, in the order,
and 〈···〉 stands for a thermal average.

Following a standard procedure, the retarded correlation function is
conveniently calculated bymeans of itsMatsubara counterpart

Πβγ (r,r′;Ων)=
∫ β

0
dτeiΩν τ 〈Tτ [ψβ (r′,0)ψ

†
β (r,τ

+)ψγ (r,τ )ψ†
γ (r
′,0+)]〉

as this expression admits a representation in terms of Feynman diagrams. Here, Tτ
is the time-ordering operator for imaginary time τ and Ων = 2πνT (ν integer) is a
bosonic Matsubara frequency at temperature T (we set kB = 1 throughout). Above
Tc, the relevant Feynman diagrams for the two-particle response are the DOS and
AL contributions shown in Fig. 4, which result once the single-particle self-energy
with pairing fluctuations is adopted. Analytic continuation from iΩν to ωth+ iη

(η being a positive infinitesimal) is eventually required. To compare theoretical
results with the experimental spectra, we have to convert fromωth toω=ωRF−ωγ β ,
where ωγ β is the atomic hyperfine frequency of the transition. Besides being
appropriate to the BCS ((aαβkF)−1 .−1) and unitarity ((aαβkF)−1 ≈ 0) regimes,
the DOS and AL contributions are also able to recover the two-body (molecular)
calculation of ref. 25 when the BEC regime (1. (aαβkF)−1) is approached. (In the
text, we have set aαβ = ai.) Note that the DOS contribution of Fig. 4a has already
been considered in ref. 26 above Tc and in ref. 10 below Tc.

Numerical procedures. Owing to the involved structure of the AL contribution
(see Fig. 4b), for the external Matsubara frequency Ων analytic continuation from
the points iΩν on the imaginary axis to (just above) the real frequency axis cannot
be achieved by the elementary methods that proved sufficient10 for the BCS-RPA
approach below Tc. The delicate analytic continuation at finite temperature that
is required for the AL diagram has been carried out in the literature by resorting
to approximations19 that do not apply to the present case, when experimental
radiofrequency spectra with non-trivial frequency structures need be accounted for
in a variety of situations.

To this end, we have carried out the analytic continuation of the AL
contribution resorting to Padé approximants27, whereby the dependence on
the external frequency Ων is approximated by the ratio of two polynomials
(the denominator having one extra power with respect to the power M of the
numerator). The 2M unknown coefficients have been determined by sampling
over about 450 Matsubara frequencies (not necessarily equally spaced). The
reliability of the numerical results has been tested against the DOS contribution
above Tc as well as the BCS-RPA calculation below Tc, which can both be obtained
by direct analytic continuation without resorting to Padé approximants. Further
independent tests on the numerical procedure are the values of the sum rules
for the spectral area10 and its first moment9, which are reproduced within 1%
and 10%, in the order.

The energy scale∆∞ of the pairing interaction. The most direct way to introduce
the quantity ∆∞ is through the coefficient (3/25/2)∆2

∞
of the ω−3/2 behaviour of

the DOS and AL contributions for largeω, which identifies

∆2
∞
=

∫
dq

(2π)3
1
β

∑
Ων

eiΩνη Γαβ (q,Ων)

where q is a wave vector andΓαβ is the pairing propagator of Fig. 4c. This expression
is conveniently evaluated by using the spectral representation28 of Γαβ . In the BCS
regime, ∆∞ coincides with the absolute value 2π|ai|n/m of the mean-field shift
for temperatures smaller than (ma2i )

−1, whereas in the BEC regime the relation
∆2
∞
= 4πn/(m2ai) holds in analogy with the BCS mean-field result. Close to Tc at

unitarity, the numerical value 0.75EF of∆∞ is comparable to the value 0.8EF of the
pseudogap extracted from the single-particle spectral function11. The temperature
dependence of ∆∞ is rather weak for all coupling regimes, extending up to several
times the Fermi temperature TF.

The energy scale ∆∞ is also related to the asymptotic behaviour of
the wave-vector distribution function n(k) as obtained from the fermionic
single-particle propagator β–β dressed by the self-energy Σβ of Fig. 4c. We get
n(k)= (m∆∞)2/k4, where ∆2

∞
is defined as above. From this expression, we

identify (m∆∞)2 with the contact intensityC of ref. 8.
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