Abstract
Particle localization is an essential ingredient in quantum Hall physics. In conventional high-mobility two-dimensional electron systems such as in GaAs/AlGaAs semiconductor heterostructures, Coulomb interactions were shown to compete with disorder and to have a central role in particle localization. Here, we address the nature of localization in graphene where the carrier mobility, quantifying the disorder, is two to four orders of magnitude smaller than in GaAs two-dimensional electron systems. We image the electronic density of states and the localized state spectrum of a graphene flake in the quantum Hall regime with a scanning single-electron transistor. Our microscopic approach provides direct insight into the nature of localization. Surprisingly, despite strong disorder, our findings indicate that localization in graphene is not dominated by single-particle physics, but rather by a competition between the underlying disorder potential and the repulsive Coulomb interaction responsible for screening.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Prange, R. E. & Girvin, S. M. (eds) The Quantum Hall Effect (Springer, 1987).
Novoselov, K. S. et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005).
Zhang, Y., Tan, Y.-W., Stormer, H. L. & Kim, P. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438, 201–204 (2005).
Ostrovsky, P. M., Gornyi, I. V. & Mirlin, A. D. Theory of anomalous quantum Hall effects in graphene. Phys. Rev. B 77, 195430 (2008).
Huckestein, B. Scaling theory of the integer quantum Hall effect. Rev. Mod. Phys. 67, 357–396 (1995).
Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S. & Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 79, 109–162 (2009).
Ilani, S. et al. The macroscopic nature of localization in the quantum Hall effect. Nature 427, 328–332 (2004).
Efros, A. L. Non-linear screening and the background density of 2DEG states in magnetic field. Solid State Commun. 67, 1019–1022 (1988).
Fogler, M. M., Novikov, D. S. & Shklovskii, B. I. Screening of hypercritical charge in graphene. Phys. Rev. B 76, 233402 (2007).
Fogler, M. M. Neutrality point of graphene with coplanar charged impurities. Preprint at <http://arxiv.org/abs/0810.1755> (2008).
Struck, A. & Kramer, B. Electron correlations and single particle physics in the integer quantum Hall effect. Phys. Rev. Lett. 97, 106801 (2006).
Jain, J. K. Composite Fermions (Cambridge Univ. Press, 2007).
Nomura, K. & MacDonald, A. H. Quantum Hall ferromagnetism in graphene. Phys. Rev. Lett. 96, 256602 (2006).
Alicea, J. & Fisher, M. P. Interplay between lattice-scale physics and the quantum Hall effect in graphene. Solid State Commun. 143, 504–509 (2007).
Checkelsky, J. G., Li, L. & Ong, N. P. Divergent resistance at the Dirac point in graphene: Evidence for a transition in high magnetic field. Phys. Rev. B 79, 115434 (2009).
Sheng, L., Sheng, D. N., Haldane, F. D. M. & Balents, L. Odd-integer quantum Hall effect in graphene: Interaction and disorder effects. Phys. Rev. Lett. 99, 196802 (2007).
Pereira, A. L. C. & Schulz, P. A. Valley polarization effects on localization in graphene Landau levels. Phys. Rev. B 77, 075416 (2008).
Geim, A. K. & Novoselov, K. S. The rise of graphene. Nature Mater. 6, 183–191 (2007).
Tan, Y.-W. et al. Measurement of scattering rate and minimum conductivity in graphene. Phys. Rev. Lett. 99, 246803 (2007).
Chen, J.-H. et al. Charged impurity scattering in graphene. Nature Phys. 4, 377–381 (2008).
Du, X., Skacho, I., Barker, A. & Andrei, E. Y. Approaching ballistic transport in suspended graphene. Nature Nanotech. 3, 491–495 (2008).
Bolotin, K. I. et al. Ultrahigh mobility in suspended graphene. Solid State Commun. 146, 351–355 (2008).
Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).
Novoselov, K. S. et al. Two-dimensional atomic crystals. Proc. Natl Acad. Sci. USA 102, 10451–10453 (2005).
Schedin, F. et al. Detection of individual gas molecules adsorbed on graphene. Nature Mater. 6, 652–655 (2007).
Yoo, M. J. et al. Scanning single-electron transistor microscopy: Imaging individual charges. Science 276, 579–582 (1997).
Yacoby, A., Hess, H. F., Fulton, T. A., Pfeiffer, L. N. & West, K. W. Electrical imaging of the quantum Hall state. Solid State Commun. 111, 1–13 (1999).
Zhu, W., Shi, Q. W., Wang, X. R., Chen, J. & Hou, J. G. The shape of disorder broadened Landau subbands in graphene. Phys. Rev. Lett. 102, 056803 (2009).
Li, G., Luican, A. & Andrei, E. Y. Scanning tunneling spectroscopy of graphene on graphite. Phys. Rev. Lett. 102, 176804 (2009).
Brandt, N. B., Chudinov, S. M. & Ponomarev, Y. G. Semimetals 1, Graphite and its Compounds (North-Holland, 1988).
Martin, J. et al. Observation of electron–hole puddles in graphene using a scanning single electron transistor. Nature Phys. 4, 144–148 (2008).
Barlas, Y., Pereg-Barnea, T., Polini, M., Asgari, R. & MacDonald, A. H. Chirality and correlations in graphene. Phys. Rev. Lett. 98, 236601–236604 (2007).
Hu, B. Y.-K., Hwang, E. H. & Das Sarma, S. Density of states of disordered graphene. Phys. Rev. B 78, 165411 (2008).
Adam, S., Hwang, E. H., Galitski, V. M. & Das Sarma, S. A self-consistent theory for graphene transport. Proc. Natl Acad. Sci. USA 104, 18392–18397 (2007).
Zhang, Y., Brar, V. W., Girit, C., Zettl, A. & Crommie, M. F. Origin of spatial charge inhomogeneity in graphene. Preprint at <http://arXiv.org/abs/0902.4793v1> (2009).
Deshpande, A., Bao, W., Miao, F., Lau, C. N. & LeRoy, B. J. Spatially resolved spectroscopy of monolayer graphene on SiO2 . Phys. Rev. B 79, 205411 (2009).
Acknowledgements
We would like to acknowledge useful discussions with Y. Meir and A. Auerbach. This work is partly supported by the Harvard NSEC.
Author information
Authors and Affiliations
Contributions
J.M.: designing the experiment, sample preparation, measurements, data analysis, preparation of the manuscript. N.A.: measurements, data analysis. G.U.: sample preparation. T.L.: sample preparation. K.v.K.: preparation of the manuscript. J.H.S.: designing the experiment, data analysis, preparation of the manuscript. A.Y.: designing the experiment, data analysis, preparation of the manuscript.
Corresponding author
Rights and permissions
About this article
Cite this article
Martin, J., Akerman, N., Ulbricht, G. et al. The nature of localization in graphene under quantum Hall conditions. Nature Phys 5, 669–674 (2009). https://doi.org/10.1038/nphys1344
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nphys1344
This article is cited by
-
Conductance quantization suppression in the quantum Hall regime
Nature Communications (2018)
-
Unconventional fractional quantum Hall effect in bilayer graphene
Scientific Reports (2017)
-
Modulation of mechanical resonance by chemical potential oscillation in graphene
Nature Physics (2016)
-
Insulating to relativistic quantum Hall transition in disordered graphene
Scientific Reports (2013)
-
Evolution of microscopic localization in graphene in a magnetic field from scattering resonances to quantum dots
Nature Physics (2011)