Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Turning solid aluminium transparent by intense soft X-ray photoionization


Saturable absorption is a phenomenon readily seen in the optical and infrared wavelengths. It has never been observed in core-electron transitions owing to the short lifetime of the excited states involved and the high intensities of the soft X-rays needed. We report saturable absorption of an L-shell transition in aluminium using record intensities over 1016 W cm−2 at a photon energy of 92 eV. From a consideration of the relevant timescales, we infer that immediately after the X-rays have passed, the sample is in an exotic state where all of the aluminium atoms have an L-shell hole, and the valence band has approximately a 9 eV temperature, whereas the atoms are still on their crystallographic positions. Subsequently, Auger decay heats the material to the warm dense matter regime, at around 25 eV temperatures. The method is an ideal candidate to study homogeneous warm dense matter, highly relevant to planetary science, astrophysics and inertial confinement fusion.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Schematic diagram of the experimental set-up.
Figure 2: Transmission of aluminium target as a function of fluence.
Figure 3: Soft X-ray emission spectrum of solid aluminium.


  1. Lewis, G. N., Lipkin, D. & Magel, T. T. Reversible photochemical processes in rigid media. A study of the phosphorescent state. J. Am. Chem. Soc. 63, 3005–3018 (1941).

    Article  Google Scholar 

  2. Davidson, R. Frontiers in High Energy Density Physics: The X-Games of Contemporary Science. (National Academies Press, 2003).

    Google Scholar 

  3. Frontiers for Discovery in High Energy Density Physics. Prepared for National Science and Technology Council, Committee on Science by the Interagency Working Group on the Physics of the Universe. (2004).

  4. Guillot, T. Interiors of giant planets inside and outside the solar system. Science 286, 72–77 (1999).

    ADS  Article  Google Scholar 

  5. Nettelmann, N. et al. Ab initio equation of state data for hydrogen, helium, and water and the internal structure of Jupiter. Astrophys. J. 683, 1217–1228 (2008).

    ADS  Article  Google Scholar 

  6. Turner, M. Connecting Quarks with the Cosmos: Eleven Science Questions for the New Century (National Academies Press, 2003).

    Google Scholar 

  7. Lindl, J. D. et al. The physics basis for ignition using indirect-drive targets on the National Ignition Facility. Phys. Plasmas 11, 339–491 (2004).

    ADS  Article  Google Scholar 

  8. Ackermann, W. et al. Operation of a free-electron laser from the extreme ultraviolet to the water window. Nature Photon. 1, 336–342 (2007).

    ADS  Article  Google Scholar 

  9. Sorokin, A. A. et al. Photoelectric effect at ultrahigh intensities. Phys. Rev. Lett. 99, 213002 (2007).

    ADS  Article  Google Scholar 

  10. Dyer, G., Bernstein, A., Cho, B. & Osterholz, J. Equation-of-state measurement of dense plasmas heated with fast protons. Phys. Rev. Lett. 101, 015002 (2008).

    ADS  Article  Google Scholar 

  11. Warm Dense Matter. <>.

  12. Chalupský, J. et al. Characteristics of focused soft X-ray free-electron laser beam determined by ablation of organic molecular solids. Opt. Express 15, 6036–6043 (2007).

    ADS  Article  Google Scholar 

  13. Tiedtke, K. et al. Gas detectors for X-ray lasers. J. Appl. Phys. 103, 094511 (2008).

    ADS  Article  Google Scholar 

  14. Henke, B. L., Gullikson, E. M. & Davis, J. C. X-Ray Interactions: Photoabsorption, scattering, transmission, and reflection at E=50–30,000 eV, Z=1–92. Atomic Data Nucl. Data Tables 54, 181–342 (1993).

    ADS  Article  Google Scholar 

  15. Vinko, S. M. et al. Free–free opacity in warm dense aluminum. High Energy Density Phys. 10.1016/j.hedp.2009.04.004 (2009, in the press).

  16. Dufour, G., Mariot, J., Nilsson-Jatko, P. & Karnatak, R. K-LL auger spectrum of aluminium. Phys. Scr. 13, 370–372 (1976).

    ADS  Article  Google Scholar 

  17. Hannah, P. H. & Weightman, P. The spectrum of Al KL2,3–L22,3V satellite Auger transitions. J. Phys. C 18, L239–L243 (1985).

    ADS  Article  Google Scholar 

  18. Almbladh, C., Morales, A. & Grossmann, G. Theory of Auger core-valence–valence processes in simple metals. I. Total yields and core-level widths. Phys. Rev. B 39, 3489–3502 (1989).

    ADS  Article  Google Scholar 

  19. Kim, D. & Kim, I. Calculation of ionization balance and electrical conductivity in nonideal aluminum plasma. Phys. Rev. E 68, 056410 (2003).

    ADS  Article  Google Scholar 

  20. Wefers, K. Properties and characterization of surface oxides on aluminum alloys. Aluminum 57, 722–726 (1981).

    Google Scholar 

  21. Seah, M. P. & Dench, W. A. Quantitative electron spectroscopy of surfaces: A standard database for electron inelastic mean free paths in solids. Surf. Interface Anal. 1, 2–11 (1979).

    Google Scholar 

  22. Ashley, J., Tung, C. & Ritchie, R. Electron inelastic mean free paths and energy losses in solids: I. Aluminum metal. Surf. Sci. 81, 409–426 (1979).

    ADS  Article  Google Scholar 

  23. Zastrau, U. et al. Bremsstrahlung and line spectroscopy of warm dense aluminum plasma heated by xuv free-electron-laser. Phys. Rev. E 78, 066406 (2008).

    ADS  Article  Google Scholar 

  24. Fabian, D., Watson, L. & Marshall, C. Soft X-ray spectroscopy and the electronic structure of solids. Rep. Prog. Phys. 34, 601–696 (1972).

    ADS  Article  Google Scholar 

  25. Pirenne, J. & Longe, P. Contribution of the double electron transitions to the soft X-ray emission bands of metals. Physica 30, 277–292 (1964).

    ADS  Article  Google Scholar 

  26. Siwick, B., Dwyer, J., Jordan, R. & Miller, R. An atomic-level view of melting using femtosecond electron diffraction. Science 302, 1382–1385 (2003).

    ADS  Article  Google Scholar 

  27. Ernstorfer, R., Harb, M., Hebeisen, C. & Sciaini, G. The formation of warm dense matter: Experimental evidence for electronic bond hardening in gold. Science 323, 1033–1037 (2009).

    ADS  Article  Google Scholar 

  28. Ping, Y., Hanson, D., Koslow, I. & Ogitsu, T. Broadband dielectric function of nonequilibrium warm dense gold. Phys. Rev. Lett. 96, 255003 (2006).

    ADS  Article  Google Scholar 

Download references


The authors want to acknowledge K. Budil of LLNL for assistance in support in funding, and acknowledge support for access to FLASH by DESY and the European Community under contract RII3-CT-2004-506008 (IA-SFS). The authors from Universität Rostock are supported by the Deutsche Forschungsgemeinschaft within SFB 652, B.N. by the EU Marie-Curie RTN ‘FLASH’, S.M.V. by EPSRC/STFC, W.M. by AWE, K.S. by the Slovak Grant Agency for Science (Grant No. 2/7196/27) and L.J., J.C., J.Ch. and V.H. by the Czech Ministry of Education (grants LC510, LC528 and LA08024) and Academy of Sciences of the Czech Republic (Z10100523, IAA400100701, and KAN 300100702). Technical assistance by A. Aquila, J. Meyer-Illse and E. M. Gullikson (LBNL) during the ALS beamtime is greatly appreciated. Operation of the Advanced Light Source was supported by the Director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under Contract No. DE-AC03-76SF00098. We gratefully acknowledge financial support by the German Federal Ministry for Education and Research through project FSP 301-FLASH, and from the Ministry of Science and Higher Education of Poland through grant SPB No. DESY/68/2007. This work was in part carried out under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344, and in part supported by grants 08-ERI-002 and 08-LW-004.

Author information

Authors and Affiliations



All authors contributed extensively to the work presented in this article.

Bob Nagler1, Ulf Zastrau2, Roland R. Fäustlin3, , Sam M. Vinko1, Thomas Whitcher1, A. J. Nelson4, Ryszard Sobierajski5,6, Jacek Krzywinski7, Jaromir Chalupsky8, Elsa Abreu9, Saša Bajt3, , Thomas Bornath10, Tomas Burian8, Henry Chapman11,12, Jaroslav Cihelka8, Tilo Döppner4, Stefan Düsterer3, , Thomas Dzelzainis13, Marta Fajardo9, Eckhart Förster2, Carsten Fortmann10, Eric Galtier14, Siegfried H. Glenzer4, Sebastian Göde10, Gianluca Gregori1, Vera Hajkova8, Phil Heimann15, Libor Juha8, Marek Jurek5, Fida Y. Khattak16, Ali Reza Khorsand6, Dorota Klinger5, Michaela Kozlova9, Tim Laarmann3, , Hae Ja Lee17, Richard W. Lee4, Karl-Heinz Meiwes-Broer10, Pascal Mercere18, William J. Murphy1, Andreas Przystawik10, Ronald Redmer10, Heidi Reinholz10, David Riley11, Gerd Röpke10, Frank Rosmej12, Karel Saksl19, Romain Schott12, Robert Thiele10, Josef Tiggesbäumker10, Sven Toleikis3, , Thomas Tschentscher20, Ingo Uschmann2, Hubert J. Vollmer4, and Justin S. Wark1

Corresponding author

Correspondence to Bob Nagler.

Additional information

A full list of authors and their affiliations appears at the end of the paper.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bob Nagler et al.. Turning solid aluminium transparent by intense soft X-ray photoionization. Nature Phys 5, 693–696 (2009).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing