Article | Published:

Resolved-sideband cooling and position measurement of a micromechanical oscillator close to the Heisenberg uncertainty limit

Nature Physics volume 5, pages 509514 (2009) | Download Citation

Abstract

The theory of quantum measurement of mechanical motion, describing the mutual coupling of a meter and a measured object, predicts a variety of phenomena such as quantum backaction, quantum correlations and non-classical states of motion. In spite of great experimental efforts, mostly based on nano-electromechanical systems, probing these in a laboratory setting has as yet eluded researchers. Cavity optomechanical systems, in which a high-quality optical resonator is parametrically coupled to a mechanical oscillator, hold great promise as a route towards the observation of such effects with macroscopic oscillators. Here, we present measurements on optomechanical systems exhibiting radiofrequency (62–122 MHz) mechanical modes, cooled to very low occupancy using a combination of cryogenic precooling and resolved-sideband laser cooling. The lowest achieved occupancy is n63. Optical measurements of these ultracold oscillators’ motion are shown to perform in a near-ideal manner, exhibiting an imprecision–backaction product about one order of magnitude lower than the results obtained with nano-electromechanical transducers.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    & Quantum Measurement (Cambridge Univ. Press, 1992).

  2. 2.

    & Putting mechanics into quantum mechanics. Phys. Today 58, 36–42 (2005).

  3. 3.

    , & Scheme to probe the decoherence of a macroscopic object. Phys. Rev. A 59, 3204–3210 (1999).

  4. 4.

    et al. Interferometric measurements of the position of a macroscopic body: Towards observations of quantum limits. Phys. Rev. A 59, 1038–1044 (1999).

  5. 5.

    , , & Towards quantum superpositions of a mirror. Phys. Rev. Lett. 91, 130401 (2003).

  6. 6.

    & A nanometre-scale mechanical electrometer. Nature 392, 160–162 (1998).

  7. 7.

    & Nanometre-scale displacement sensing using a single-electron transistor. Nature 424, 291–293 (2003).

  8. 8.

    , , & Approaching the quantum limit of a nanomechanical resonator. Science 304, 74–77 (2004).

  9. 9.

    et al. Cooling a nanomechanical resonator with quantum back-action. Nature 443, 193–196 (2006).

  10. 10.

    , & Measuring nanomechanical motion with a microwave cavity interferometer. Nature Phys. 4, 555–560 (2008).

  11. 11.

    , , & Dynamical backaction of microwave fields on a nanomechanical oscillator. Phys. Rev. Lett. 101, 197203 (2008).

  12. 12.

    et al. Motion detection of a micromechanical resonator embedded in a d.c. SQUID. Nature Phys. 4, 785–788 (2008).

  13. 13.

    & Cavity optomechanics: Back-action at the mesoscale. Science 321, 1172–1176 (2008).

  14. 14.

    et al. High-sensitivity optical monitoring of a micromechanical resonator with a quantum-limited optomechanical sensor. Phys. Rev. Lett. 97, 133601 (2006).

  15. 15.

    et al. High-sensitivity monitoring of micromechanical vibration using optical whispering gallery mode resonators. New J. Phys. 10, 095015 (2008).

  16. 16.

    Heating and cooling of local and quasilocal vibrations by a nonresonance field. Sov. Phys. Solid State 20, 1306–1311 (1978).

  17. 17.

    et al. Self-cooling of a micromirror by radiation pressure. Nature 444, 67–70 (2006).

  18. 18.

    et al. Radiation-pressure cooling and optomechanical instability of a micromirror. Nature 444, 71–74 (2006).

  19. 19.

    et al. Radiation pressure cooling of a micromechanical oscillator using dynamical backaction. Phys. Rev. Lett. 97, 243905 (2006).

  20. 20.

    et al. Resolved-sideband cooling of a micromechanical oscillator. Nature Phys. 4, 415–419 (2008).

  21. 21.

    , , , & Introduction to quantum noise, measurement and amplification. Preprint at <> (2008).

  22. 22.

    , & Intrinsic noise properties of atomic point contact displacement detectors. Phys. Rev. Lett. 98, 096804 (2007).

  23. 23.

    , , & Ultra-high-Q toroid microcavity on a chip. Nature 421, 925–928 (2003).

  24. 24.

    , , , & Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity. Phys. Rev. Lett. 95, 033901 (2005).

  25. 25.

    , & Effective mass in quantum effects of radiation pressure. Eur. Phys. J. D 7, 107–116 (1999).

  26. 26.

    , , , & Ultralow-dissipation optomechanical resonators on a chip. Nature Photon. 2, 627–633 (2008).

  27. 27.

    , , & Cryogenic properties of optomechanical silica microcavities. Preprint at <> (2009).

  28. 28.

    , & Low-temperature thermal conductivity and acoustic attenuation in amorphous solids. Rev. Mod. Phys. 74, 991–1013 (2002).

  29. 29.

    Quantum-mechanical noise in an interferometer. Phys. Rev. D 23, 1693–1708 (1981).

  30. 30.

    & Low quantum noise tranquilizer for Fabry–Perot interferometer. Phys. Lett. A 293, 228–234 (2002).

  31. 31.

    & Laser cooling of atoms. Phys. Rev. A 20, 1521–1540 (1979).

  32. 32.

    , , & Theory of ground state cooling of a mechanical oscillator using dynamical backaction. Phys. Rev. Lett. 99, 093901 (2007).

  33. 33.

    , , & Quantum theory of cavity-assisted sideband cooling of mechanical motion. Phys. Rev. Lett. 99, 093902 (2007).

  34. 34.

    & Quantum nondemolition measurements: The route from toys to tools. Rev. Mod. Phys. 68, 1–11 (1996).

  35. 35.

    , , , & Ground-state cooling of a micromechanical oscillator: Comparing cold damping and cavity-assisted cooling schemes. Phys. Rev. A 77, 033804 (2008).

  36. 36.

    , , & Nonlinear optics and crystalline whispering gallery mode cavities. Phys. Rev. Lett. 92, 043903 (2004).

  37. 37.

    et al. Quantum-noise reduction using a cavity with a movable mirror. Phys. Rev. A 49, 1337–1343 (1994).

  38. 38.

    & Quantum noise reduction by radiation pressure. Phys. Rev. A 49, 4055–4065 (1994).

  39. 39.

    et al. Optomechanical entanglement between a movable mirror and a cavity field. Phys. Rev. Lett. 98, 030405 (2007).

  40. 40.

    , & Back-action evasion and squeezing of a mechanical resonator using a cavity detector. New J. Phys. 10, 095010 (2008).

  41. 41.

    , & Quantum nondemolition measurement by optomechanical coupling. Appl. Phys. B 64, 173–180 (1997).

Download references

Acknowledgements

This work was supported by an Independent Max Planck Junior Research Group of the Max Planck Society, the Deutsche Forschungsgemeinschaft (DFG-GSC), the FP7 Project MINOS and a Marie Curie Excellence Grant. O.A. acknowledges financial support from a Marie Curie Grant (project QUOM). T. Becker is gratefully acknowledged for support with the cryogenic experiments, and J. Kotthaus for sample fabrication. T.J.K. gratefully thanks P. Gruss and MPQ for continued Max-Planck support.

Author information

Author notes

    • A. Schliesser
    • , O. Arcizet
    •  & R. Rivière

    These authors contributed equally to this work

Affiliations

  1. Max Planck Institut für Quantenoptik, D-85748 Garching, Germany

    • A. Schliesser
    • , O. Arcizet
    • , R. Rivière
    • , G. Anetsberger
    •  & T. J. Kippenberg
  2. Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland

    • T. J. Kippenberg

Authors

  1. Search for A. Schliesser in:

  2. Search for O. Arcizet in:

  3. Search for R. Rivière in:

  4. Search for G. Anetsberger in:

  5. Search for T. J. Kippenberg in:

Corresponding author

Correspondence to T. J. Kippenberg.

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nphys1304

Further reading