Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Coherent ultrafast magnetism induced by femtosecond laser pulses

This article has been updated

Abstract

The quest for ultrafast magnetic processes has triggered a new field of research—femtomagnetism: using femtosecond laser pulses to demagnetize ferromagnetic metallic thin films. Despite being the subject of intense research for over a decade, the underlying mechanisms that govern the demagnetization remain unclear. Here, we investigate how an ultrashort laser pulse couples to the spin of electrons in ferromagnetic metals. It is shown that a single 50-fs laser pulse couples efficiently to a ferromagnetic film during its own propagation. This result indicates that the material polarization induced by the photon field interacts coherently with the spins. The corresponding mechanism has its origin in relativistic quantum electrodynamics, beyond the spin–orbit interaction involving the ionic potential. In addition, this coherent interaction is clearly distinguished from the incoherent ultrafast demagnetization associated with the thermalization of the spins. We forecast that the corresponding coherent self-induced processes are the dawn of a new era for future research in magnetism.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sequence of mechanisms in ultrafast magnetization dynamics.
Figure 2: Single-femtosecond-pulse Faraday experiment.
Figure 3: Coherent electronic and magnetic responses of ferromagnetic films.
Figure 4: Distinction between the coherent and incoherent magnetic processes.

Similar content being viewed by others

Change history

  • 16 June 2009

    In the version of this article originally published online, corrections were needed to: Fig. 1, right-hand Gel label should read Gsl; Fig. 2b,c, the 0 label on the x axes should read 1; Fig. 3a,c, the legend for the red line should read 0°. These corrections have now been made in all versions of the article.

References

  1. Beaurepaire, E., Merle, J.-C., Daunois, A. & Bigot, J.-Y. Ultrafast spin dynamics in ferromagnetic nickel. Phys. Rev. Lett. 76, 4250–4253 (1996).

    Article  ADS  Google Scholar 

  2. Hohlfeld, J., Matthias, E., Knorren, R. & Bennemann, K. H. Nonequilibrium magnetization dynamics of nickel. Phys. Rev. Lett. 78, 4861–4864 (1997).

    Article  ADS  Google Scholar 

  3. Aeschlimann, M. et al. Ultrafast spin-dependent electron dynamics in fcc Co. Phys. Rev. Lett. 79, 5158–5161 (1997).

    Article  ADS  Google Scholar 

  4. Scholl, A., Baumgarten, L., Jacquemin, R. & Eberhardt, W. Ultrafast spin dynamics of ferromagnetic thin films observed by fs spin-resolved two-photon photoemission. Phys. Rev. Lett. 79, 5146–5149 (1997).

    Article  ADS  Google Scholar 

  5. Hübner, W. & Zhang, G. P. Ultrafast spin dynamics in nickel. Phys. Rev. B 58, R5920–R5923 (1998).

    Article  ADS  Google Scholar 

  6. Ganping, Ju. et al. Ultrafast time resolved photoinduced magnetization rotation in a ferromagnetic/ antiferromagnetic exchange coupled system. Phys. Rev. Lett. 82, 3705–3708 (1999).

    Article  Google Scholar 

  7. van Kampen, M. et al. All-optical probe of coherent spin waves. Phys. Rev. Lett. 88, 227201(4) (2002).

    Article  ADS  Google Scholar 

  8. Vomir, M., Andrade, L. H. F., Guidoni, L., Beaurepaire, E. & Bigot, J.-Y. Real space trajectory of the ultrafast magnetization dynamics in ferromagnetic metals. Phys. Rev. Lett. 94, 237601(4) (2005).

    Article  ADS  Google Scholar 

  9. Bigot, J.-Y., Vomir, M., Andrade, L. H. F. & Beaurepaire, E. Ultrafast magnetization dynamics in ferromagnetic cobalt: The role of the anisotropy. Chem. Phys. 318, 137–146 (2005).

    Article  Google Scholar 

  10. Bigot, J.-Y. Femtosecond magneto-optical processes in metals. C. R. Acad. Sci. Ser. IV 2, 1483–1504 (2001).

    Google Scholar 

  11. Knorren, R., Bennemann, K. H., Burgermeister, R. & Aeschlimann, M. Dynamics of excited electrons in copper and ferromagnetic transition metals: Theory and experiment. Phys. Rev. B 61, 9427–9440 (2000).

    Article  ADS  Google Scholar 

  12. Güdde, J., Conrad, U., Jähnke, V., Hohlfeld, J. & Matthias, E. Magnetization dynamics of Ni and Co films on Cu(001) and of bulk nickel surfaces. Phys. Rev. B 59, R6608–R6611 (1999).

    Article  ADS  Google Scholar 

  13. Regensburger, H., Vollmer, R. & Kirschner, J. Time-resolved magnetization-induced second-harmonic generation from the Ni(110) surface. Phys. Rev. B 61, 14716–14722 (2000).

    Article  ADS  Google Scholar 

  14. Ney, O., Trzeciecki, M. & Hübner, W. Femtosecond dynamics of spin-dependent SHG response from NiO (001). Appl. Phys. B 74, 741–744 (2002).

    Article  ADS  Google Scholar 

  15. Stamm, C. et al. Femtosecond modification of electron localization and transfer of angular momentum in nickel. Nature Mater. 6, 740–743 (2007).

    Article  ADS  Google Scholar 

  16. Koopmans, B., Kampen, M., van, Kohlhepp, J. T. & de Jonge, W. J. M. Ultrafast magneto-optics in nickel: Magnetism or optics? Phys. Rev. Lett. 85, 844–847 (2000).

    Article  ADS  Google Scholar 

  17. Rebei, A. & Hohlfeld, J. The magneto-optical Barnett effect: Circularly polarized light induced femtosecond magnetization reversal. Phys. Lett. A 372, 1915–1918 (2008).

    Article  ADS  Google Scholar 

  18. Zhang, G. P. & Hübner, W. Laser-induced ultrafast demagnetization in ferromagnetic metals. Phys. Rev. Lett. 85, 3025–3028 (2000).

    Article  ADS  Google Scholar 

  19. Zhang, G., Hübner, W., Beaurepaire, E. & Bigot, J.-Y. in Spin Dynamics in Confined Magnetic Structures I (eds Hillebrands, B. & Ounadjela, K.) 245–288 (Topics in Applied Physics, Vol. 83, Springer, 2002).

    Book  Google Scholar 

  20. Koopmans, B., Ruigrok, J. J. M., Dalla Longa, F. & de Jonge, W. J. M. Unifying ultrafast magnetization dynamics. Phys. Rev. Lett. 95, 267207(4) (2005).

    Article  ADS  Google Scholar 

  21. Koopmans, B. Spin dynamics: The ultimate view. Nature Mater. 6, 715–716 (2007).

    Article  ADS  Google Scholar 

  22. Lisowski, M. et al. Femtosecond electron and spin dynamics in Gd(0001) studied by time-resolved photoemission and magneto-optics. Phys. Rev. Lett. 95, 137402(4) (2005).

    Article  ADS  Google Scholar 

  23. Rhie, H.-S., Dürr, H. A. & Eberhardt, W. Femtosecond electron and spin dynamics in Ni/W(110) films. Phys. Rev. Lett. 90, 247201(4) (2003).

    Article  ADS  Google Scholar 

  24. Schmidt, A. B., Pickel, M., Wiemhöfer, M., Donath, M. & Weinelt, M. Spin-dependent electron dynamics in front of a ferromagnetic surface. Phys. Rev. Lett. 95, 107402(4) (2005).

    Article  ADS  Google Scholar 

  25. Beaurepaire, E. et al. Coherent terahertz emission from ferromagnetic films excited by femtosecond laser pulses. Appl. Phys. Lett. 84, 3465–3467 (2004).

    Article  ADS  Google Scholar 

  26. Hilton, D. J. et al. Terahertz emission via ultrashort-pulse excitation of magnetic metal films. Opt. Lett. 29/15, 1805–1807 (2004).

    Article  ADS  Google Scholar 

  27. Guidoni, L., Beaurepaire, E. & Bigot, J.-Y. Magneto-optics in the ultrafast regime: Thermalization of spin populations in ferromagnetic films. Phys. Rev. Lett. 89, 17401(4) (2002).

    Article  ADS  Google Scholar 

  28. Oppeneer, P. M. & Liebsch, A. Ultrafast demagnetization in Ni: Theory of magneto-optics for non-equilibrium electron distributions. J. Phys. Condens. Matter 16, 5519–5530 (2004).

    Article  ADS  Google Scholar 

  29. Walowski, J. et al. Energy equilibration processes of electrons, magnons, and phonons at the femtosecond time scale. Phys. Rev. Lett. 101, 237401(4) (2008).

    Article  ADS  Google Scholar 

  30. Radu, I. et al. Laser-induced magnetization dynamics of lanthanide-doped permalloy thin films. Phys. Rev. Lett. 102, 117201 (2009).

    Article  ADS  Google Scholar 

  31. Carpene, E. et al. Dynamics of electron–magnon interaction and ultrafast demagnetization in thin iron films. Phys. Rev. B 78, 174422(6) (2008).

    Article  ADS  Google Scholar 

  32. Bigot, J.-Y. Irsee International Colloquium of the SPP1133—Ultrafast Magnetization Processes, Kloster Irsee, 15–19 Sept. 89 (Technische Universität Kaiserslautern and Deutsche Forschungsgemeinschaft, 2008).

    Google Scholar 

  33. Beaurepaire, E. et al. Spin dynamics in CoPt3 alloy films: A magnetic phase transition in the femtosecond time scale. Phys. Rev. B 58, 12134–12137 (1998).

    Article  ADS  Google Scholar 

  34. Chubykalo-Fesenko, O., Nowak, U., Chantrell, R. W. & Garanin, D. Dynamic approach for micromagnetics close to the Curie temperature. Phys. Rev. B 74, 094436(5) (2006).

    Article  ADS  Google Scholar 

  35. Dodge, J. S. et al. Time-resolved optical observation of spin-wave dynamics. Phys. Rev. Lett. 83, 4650–4653 (1999).

    Article  ADS  Google Scholar 

  36. Miltat, J., Albuquerque, G. & Thiaville, A. in Spin Dynamics in Confined Magnetic Structures, Vol. I (eds Hillebrands, B. & Ounadjela, K.) 1–31 (Topics in Applied Physics, Vol. 83, Springer, 2002).

    Book  Google Scholar 

  37. Ralph, D. C. & Stiles, M. D. Spin transfer torques. J. Magn. Magn. Mater. 320, 1190–1216 (2008).

    Article  ADS  Google Scholar 

  38. Argyres, P. N. Theory of the Faraday and Kerr effects in ferromagnetics. Phys. Rev. 97, 334–345 (1955).

    Article  ADS  Google Scholar 

  39. Strange, P. Relativistic Quantum Mechanics Ch. 7 (Cambridge Univ. Press, 1998).

    Book  Google Scholar 

  40. Zhang, G. P. Laser-induced orbital and spin excitations in ferromagnets: Insights from a two-level system. Phys. Rev. Lett. 101, 187203(4) (2008).

    ADS  Google Scholar 

  41. Halilov, S. V., Eschrig, H., Perlov, A. Y. & Oppeneer, P. M. Adiabatic spin dynamics from spin-density-functional theory: Application to Fe, Co, and Ni. Phys. Rev. B 58, 293–302 (1998).

    Article  ADS  Google Scholar 

  42. Brito-Cruz, C.-H., Gordon, J.-P., Becker, P. C., Fork, R. L. & Shank, C. V. IEEE J. Quantum Electron. 24, 261–269 (1988).

    Article  ADS  Google Scholar 

  43. Bigot, J.-Y., Portella, M. T., Schoenlein, R. W., Cunningham, J. E. & Shank, C. V. Two-dimensional carrier–carrier screening in a quantum well. Phys. Rev. Lett. 67, 636–639 (1991).

    Article  ADS  Google Scholar 

  44. El Sayed, K., Banyai, L. & Haug, H. Coulomb quantum kinetic and optical dephasing on the femtosecond time scale. Phys. Rev. B 50, 1541–1550 (1994).

    Article  ADS  Google Scholar 

  45. Bonitz, M. et al. Theory and simulation of strong correlations in quantum Coulomb systems. J. Phys. A 36, 5921–5930 (2003).

    Article  ADS  Google Scholar 

  46. Pershan, P. S., van der Ziel, J. P. & Malmstrom, L. D. Theoretical discussion of the inverse Faraday effect, Raman scattering and related phenomena. Phys. Rev. 143, 574–583 (1965).

    Article  ADS  Google Scholar 

  47. Kimel, A. V. et al. Ultrafast non-thermal control of magnetization by instantaneous photomagnetic pulses. Nature 435, 655–657 (2005).

    Article  ADS  Google Scholar 

  48. Hansteen, F., Kimel, A., Kirilyuk, A. & Rasing, Th. Femtosecond photomagnetic switching of spins in ferrimagnetic garnet films. Phys. Rev. Lett. 95, 047402(4) (2005).

    Article  ADS  Google Scholar 

  49. Stanciu, C. D. et al. Ultrafast interaction of the angular momentum of photons with spins in the metallic amorphous alloy GdFeCo. Phys. Rev. Lett. 98, 207401(4) (2007).

    Article  ADS  Google Scholar 

  50. Kurkin, M. I., Bakulina, N. B. & Pisarev, R. V. Transient inverse Faraday effect and ultrafast optical switching of magnetization. Phys. Rev. B 78, 134430(9) (2008).

    Article  ADS  Google Scholar 

  51. Chovan, J., Kavousanaki, E. G. & Perakis, I. E. Ultrafast light-induced magnetization dynamics of ferromagnetic semiconductors. Phys. Rev. Lett. 96, 057402(4) (2006).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank I. Perakis for helpful discussions on coherent magnetic effects in semiconductors, and J. Arabski and M. Albrecht for their technical support. This project was carried on thanks to the financial support of the Centre National de la Recherche Scientifique in France.

Author information

Authors and Affiliations

Authors

Contributions

J.Y.B. and M.V. designed and carried out the experiments, analysed the data and wrote the paper. E.B. supervised the samples elaboration and characterization.

Corresponding author

Correspondence to Jean-Yves Bigot.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bigot, JY., Vomir, M. & Beaurepaire, E. Coherent ultrafast magnetism induced by femtosecond laser pulses. Nature Phys 5, 515–520 (2009). https://doi.org/10.1038/nphys1285

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys1285

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing