Abstract
Mean-field methods are a very powerful tool for investigating weakly interacting many-body systems in many branches of physics. In particular, they describe with excellent accuracy trapped Bose–Einstein condensates. A generic, but difficult question concerns the relation between the symmetry properties of the true many-body state and its mean-field approximation. Here, we address this question by considering, theoretically, vortex nucleation in a rotating Bose–Einstein condensate. A slow sweep of the rotation frequency changes the state of the system from being at rest to the one containing one vortex. Within the mean-field framework, the jump in symmetry occurs through a turbulent phase around a certain critical frequency. The exact many-body ground state at the critical frequency exhibits strong correlations and entanglement. We believe that this constitutes a paradigm example of symmetry breaking in—or change of the order parameter of—quantum many-body systems in the course of adiabatic evolution.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Fragmentation and correlations in a rotating Bose–Einstein condensate undergoing breakup
Scientific Reports Open Access 27 February 2023
-
Phantom vortices: hidden angular momentum in ultracold dilute Bose-Einstein condensates
Scientific Reports Open Access 16 January 2017
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout




References
Weiss, P. L’hypothèse du champ moléculaire et la propriété ferromagnétique. J. Phys.Théor. et Appliq. 6, 661–690 (1907).
Pitaevskii, L. & Stringari, S. Bose–Einstein Condensation (Oxford Univ. Press, 2003).
Jaksch, D., Bruder, C., Cirac, J. I., Gardiner, C. W. & Zoller, P. Cold bosonic atoms in optical lattices. Phys. Rev. Lett. 81, 3108–3111 (1998).
Cooper, N. R. Rapidly rotating atomic gases. Adv. Phys. 57, 539–616 (2008).
Yoshioka, D. The Quantum Hall Effect (Springer, 2002).
Griffin, A. Excitations in a Bose–Condensed Liquid (Cambridge Univ. Press, 1993).
Fetter, A. L. Rotating trapped Bose–Einstein condensates. Laser. Phys. 18, 1–11 (2008).
Feder, D. L., Clark, C. W. & Schneider, B. I. Nucleation of vortex arrays in rotating anisotropic Bose–Einstein condensates. Phys. Rev. A 61, 011601 (2000).
Sinha, S. & Castin, Y. Dynamic instability of a rotating Bose–Einstein condensate. Phys. Rev. Lett. 87, 190402 (2001).
Kasamatsu, K., Tsubota, M. & Ueda, M. Nonlinear dynamics of vortex lattice formation in a rotating Bose–Einstein condensate. Phys. Rev. A 67, 033610 (2003).
Butts, D. A. & Roksar, D. S. Predicted signatures of rotating Bose–Einstein condensates. Nature 397, 327–329 (1999).
Bertsch, G. F. & Papenbrock, T. Yrast line for weakly interacting trapped bosons. Phys. Rev. Lett. 83, 5412–5414 (1999).
Smith, R. A. & Wilkin, N. K. Exact eigenstates for repulsive bosons in two dimensions. Phys. Rev. A 62, 061602 (2000).
Jackson, A. D. & Kavoulakis, G. M. Analytical results for the interaction energy of a trapped, weakly interacting Bose–Einstien condensate. Phys. Rev. Lett. 85, 2854–2856 (2000).
Dagnino, D., Barberán, N., Osterloh, K., Riera, A. & Lewenstein, M. Symmetry breaking in small rotating clouds of trapped ultracold Bose atoms. Phys. Rev. A 76, 013625 (2007).
Romanovsky, I., Yannouleas, C. & Landman, U. Symmetry-conserving vortex clusters in small rotating clouds of ultracold bosons. Phys. Rev. A 78, 011606(R) (2008).
Parke, M. I., Wilkin, N. K., Gunn, J. M. F. & Bourne, A. Exact vortex nucleation and cooperative tunneling in dilute BECs. Phys. Rev. Lett. 101, 110401 (2008).
Pitaevskii, L. P. Vortex lines in an imperfect Bose gas. Sov. Phys. JETP 13, 451–454 (1961).
Gross, E. P. Structure of a quantized vortex in boson systems. Nuovo Cimento 20, 454–477 (1961).
Stringari, S. Phase diagram of quantized vortices in a trapped Bose–Einstein condensed gas. Phys. Rev. Lett. 82, 4371–4375 (1999).
Ueda, M. & Nakalima, T. Nambu-Goldstone mode in a rotating Bose–Einstein condensate. Phys. Rev. A 73, 043603 (2006).
Morris, A. G. & Feder, D. L. Validity of the lowest-Landau-level approximation for rotating Bose gases. Phys. Rev. A 60, 033605 (2006).
Wilkin, N. K. & Gunn, J. M. Condensation of composite bosons in a rotating BEC. Phys. Rev. Lett. 84, 6–9 (2000).
Eckert, K., Schliemann, J., Bruß, D. & Lewenstein, M. Quantum correlations in systems of indistinguishable particles. Ann. Phys. (NY) 299, 88–127 (2002).
Zanardi, P. Quantum entanglement in fermionic lattices. Phys. Rev. A 65, 042101 (2001).
Nunnenkamp, A., Rey, A. M. & Burnett, K. Cat state production with ultracold bosons in rotating ring superlattices. Phys. Rev. A 84, 023622 (2008).
Messiah, A. Quantum Mechanics Ch. XVII (Courier Dover Publications, 1999).
Perez-García, V. M., Michinel, H., Cirac, J. I., Lewenstein, M. & Zoller, P. Low energy excitations of a Bose–Einstein condensate: A time-dependent variational analysis. Phys. Rev. Lett. 77, 5320–5323 (1996).
Garay, L. J., Anglin, J. R., Cirac, J. I. & Zoller, P. Sonic analog of gravitational black holes in Bose–Einstein condensates. Phys. Rev. Lett. 85, 4643–4647 (2000).
Fetter, A. L. Lowest-Landau-level description of a Bose–Einstein condensate in a rapidly rotating anisotropic trap. Phys. Rev. A 75, 013620 (2007).
Acknowledgements
We acknowledge discussions with I. Cirac and the support of the EU SCALA and ESF Fermix Programs, Spanish MEC grants (FIS 2005-03169/04627, QOIT) and the French programs ANR and IFRAF.
Author information
Authors and Affiliations
Contributions
All authors have contributed equally to this work.
Corresponding author
Rights and permissions
About this article
Cite this article
Dagnino, D., Barberán, N., Lewenstein, M. et al. Vortex nucleation as a case study of symmetry breaking in quantum systems. Nature Phys 5, 431–437 (2009). https://doi.org/10.1038/nphys1277
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nphys1277
This article is cited by
-
Fragmentation and correlations in a rotating Bose–Einstein condensate undergoing breakup
Scientific Reports (2023)
-
Phantom vortices: hidden angular momentum in ultracold dilute Bose-Einstein condensates
Scientific Reports (2017)
-
Single-shot simulations of dynamic quantum many-body systems
Nature Physics (2016)
-
Resonances and Dynamical Fragmentation in a Stirred Bose–Einstein Condensate
Journal of Low Temperature Physics (2015)
-
Improved Variational Approach to the Two-Site Bose-Hubbard Model
Journal of Low Temperature Physics (2011)