Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The distribution of spatially averaged critical properties

Abstract

Critical properties throughout science are popularly associated with heavy-tailed distributions, but experimental evidence indicates several alternative, and very different, functional forms. Until now there has been no clear understanding of why this is, nor any general criterion as to which form to expect in a given practical situation. Here, a general scaling argument is presented, specific to spatially averaged properties, that indicates the following simple rule: if the mean value increases rapidly with system size then a power-law distribution is appropriate; if it changes slowly then a ‘generalized Gumbel distribution’ is likely, and if it decreases rapidly then an exponentially truncated power-law distribution is appropriate. The three scenarios are connected with the well-established classification of a scaling variable as either irrelevant, marginal or relevant. This result is supported by the current data set and finally renders comprehensible the fact that real critical properties exhibit diverse and apparently unrelated distributions, instead of ubiquitous heavy tails.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

References

  1. Newman, M. E. J. Power laws, Pareto distributions and Zipf’s law. Contemp. Phys. 46, 323–351 (2005).

    Article  ADS  Google Scholar 

  2. Christensen, K., Danon, L., Scanlon, T. & Bak, P. Universal scaling law for earthquakes. Proc. Natl Acad. Sci. 99, 2509–2513 (2002).

    Article  ADS  Google Scholar 

  3. Gumbel, E. J. Statistics of Extremes (Columbia Univ. Press, 1958).

    Book  Google Scholar 

  4. Joubaud, S., Petrosyan, A., Ciliberto, S. & Garnier, N. B. Experimental evidence of non-Gaussian fluctuations near a critical point. Phys. Rev. Lett. 100, 180601 (2008).

    Article  ADS  Google Scholar 

  5. Bramwell, S. T., Holdsworth, P. C. W. & Pinton, J.-F. Universality of rare fluctuations in turbulence and critical phenomena. Nature 396, 552–554 (1998).

    Article  ADS  Google Scholar 

  6. Pinton, J-F., Holdsworth, P. C. W. & Labbé, R. Power fluctuations in a closed turbulent shear flow. Phys. Rev. E 60, R2452–R2455 (1999).

    Article  ADS  Google Scholar 

  7. Portelli, B., Holdsworth, P. C. W. & Pinton, J.-F. Intermittency and non-Gaussian fluctuations of the global energy transfer in fully developed turbulence. Phys. Rev. Lett. 90, 104501 (2003).

    Article  ADS  Google Scholar 

  8. Van Milligen, B. P., Sanchez, R., Carreras, B. A., Lynch, V. E. & LaBombard, B. Additional evidence for the universality of the probability distribution of turbulent fluctuations and fluxes in the scrape-off layer region of fusion plasmas. Phys. Plasmas 12, 052507 (2005).

    Article  ADS  Google Scholar 

  9. Antal, T., Droz, M., Györgyi, G. & Rácz, Z. 1/f noise and extreme value statistics. Phys. Rev. Lett. 87, 240601 (2001).

    Article  ADS  Google Scholar 

  10. Bramwell, S., T., Fennell, T., Holdsworth, P. C. W. & Portelli, B. Universal fluctuations of the Danube water level: A link with turbulence, criticality and company growth. Europhys. Lett. 57, 310–314 (2002).

    Article  ADS  Google Scholar 

  11. Dahlstedt, K. & Jensen, H. J. Fluctuation spectrum and size scaling of river flow and level. Phys. A 348, 596–610 (2005).

    Article  Google Scholar 

  12. Pennetta, C., Alfinito, E., Reggiani, L. & Ruffo, S. Non-Gaussianity of resistance fluctuations near electrical breakdown. Semicond. Sci. Technol. 19, S164–S166 (2004).

    Article  ADS  Google Scholar 

  13. Chamon, C. & Cugliandolo, L. F. Fluctuations in glassy systems. J. Stat. Mech. P07022 (2007).

  14. Brey, J. J., Garcia de Soria, M. I., Maynar, P. & Ruiz-Montero, M. J. Mesoscopic theory of critical fluctuations in isolated granular gases. Phys. Rev. Lett. 94, 098001 (2005).

    Article  ADS  Google Scholar 

  15. Goldburg, W. I., Goldschmidt, Y. Y. & Kellay, H. Fluctuation and dissipation in liquid-crystal electroconvection. Phys. Rev. Lett. 87, 245502 (2001).

    Article  ADS  Google Scholar 

  16. Toth-Katona, T. & Gleeson, J. T. Distribution of injected power fluctuations in electroconvection. Phys. Rev. Lett. 91, 264501 (2003).

    Article  ADS  Google Scholar 

  17. Bramwell, S. T. et al. Universal fluctuations in correlated systems. Phys. Rev. Lett. 84, 3744–3747 (2000).

    Article  ADS  Google Scholar 

  18. Rypdal, K. et al. Scale-free vortex cascade emerging from random forcing in a strongly coupled system. New J. Phys. 10, 093018 (2008).

    Article  ADS  Google Scholar 

  19. Chapman, S. C., Rowlands, G. & Watkins, N. W. Extreme statistics: A framework for data analysis. Nonl. Proc. Geophys. 9, 409–418 (2002).

    Article  ADS  Google Scholar 

  20. Planet, R., Santucci, S. & Ortín, J. Avalanches and non-Gaussian fluctuations of the global velocity of imbibation fronts. Phys. Rev. Lett. 102, 094502 (2009).

    Article  ADS  Google Scholar 

  21. Zheng, B. Generic features of fluctuations in critical systems. Phys. Rev. E 67, 026114 (2003).

    Article  ADS  Google Scholar 

  22. Bertin, E. Global fluctuations and Gumbel statistics. Phys. Rev. Lett. 95, 170601 (2005).

    Article  ADS  Google Scholar 

  23. Clusel, M., Fortin, J.-Y. & Holdsworth, P. C. W. Criterion for universality-class-independent critical fluctuations: Example of the two-dimensional Ising model. Phys. Rev. E 70, 046112 (2004).

    Article  ADS  Google Scholar 

  24. van Wijland, F. Phonon displacement distribution at T=0. Physica A 332, 360–366 (2004).

    Article  ADS  Google Scholar 

  25. Bertin, E. & Clusel, M. Generalised extreme value statistics and sum of correlated variables. J. Phys. A 39, 7607–7619 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  26. Bertin, E. & Clusel, M. Global fluctuations in physical systems: A subtle interplay between sum and extreme value statistics. Int. J. Mod. Phys B 22, 3311–3368 (2008).

    Article  ADS  MathSciNet  Google Scholar 

  27. Bruce, A. D. Critical finite-size scaling of the free energy. J. Phys. A 28, 3345–3349 (1995).

    Article  ADS  Google Scholar 

  28. Labit, B. et al. Universal statistical properties of drift-interchange turbulence in TORPEX plasmas. Phys. Rev. Lett. 98, 255002 (2007).

    Article  ADS  Google Scholar 

  29. Farago, J. Injected power fluctuations in Langevin equation. J. Stat. Phys. 107, 781–803 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  30. Goldenfeld, N. Lectures on Phase Transitions and the Renormalization Group (Addison–Wesley, 1992).

    MATH  Google Scholar 

  31. Malakis, A. & Fytas, N. G. Universal features and tail analysis of the order-parameter distribution of the two-dimensional Ising model: An entropic sampling Monte Carlo study. Phys. Rev. E 73, 056114 (2006).

    Article  ADS  Google Scholar 

  32. Tsypin, M. M. & Blöte, H. W. J. Probability distribution of the order parameter for the three-dimensional Ising-model universality class: A high-precision Monte Carlo study. Phys. Rev. E 62, 73–76 (2000).

    Article  ADS  Google Scholar 

  33. Bramwell, S. T. et al. Magnetic fluctuations in the classical XY model: The origin of an exponential tail in a complex system. Phys. Rev. E 63, 041106 (2001).

    Article  ADS  Google Scholar 

  34. Berezinskii, V. L. Destruction of long range order on one-dimensional and two-dimensional systems having a continuous symmetry, I—classical systems. J. Exp. Theor. Phys. 32, 493–500 (1971).

    ADS  MathSciNet  Google Scholar 

  35. Banks, S. T. & Bramwell, S. T. Temperature-dependent fluctuations in the two-dimensional XY model. J. Phys. A 38, 5603–5615 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  36. Ricardo Paredes, V. & Botet, R. Scanning the critical fluctuations: Application to the phenomenology of the two-dimensional XY model. Phys. Rev. E 74, 060102 (2006).

    Article  Google Scholar 

  37. Foltin, G., Oerding, K., Rácz, Z., Workman, R. L. & Zia, R. K. P. Width distribution for random-walk interfaces. Phys. Rev. E 50, R639–R642 (1994).

    Article  ADS  Google Scholar 

  38. Portelli, B., Holdsworth, P. C. W., Sellito, M. & Bramwell, S. T. Universal magnetic fluctuations with a field-induced length scale. Phys. Rev. E 64, 036111 (2001).

    Article  ADS  Google Scholar 

  39. Oono, Y. Large deviation and statistical physics. Prog. Theor. Phys. Suppl. 99, 165–205 (1989).

    Article  ADS  MathSciNet  Google Scholar 

  40. Boucher, C., Ellis, R.S. & Turkington, B. Spatializing random measures: Doubly indexed processes and the large deviation principle. Ann. Probab. 27, 297–324 (1999).

    Article  MathSciNet  Google Scholar 

  41. Salazar, R., Toralb, R. & Plastinoc, A. R. Numerical determination of the distribution of energies for the XY-model. Physica A 305, 144–147 (2002).

    Article  ADS  Google Scholar 

  42. Barré, J., Bouchet, F., Dauxois, T. & Ruffo, S. Large deviation techniques applied to systems with long-range interactions. J. Stat. Phys. 119, 677–713 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  43. Fisher, R. A. & Tippett, L. H. C. Limiting forms of the frequency distribution of the largest or smallest member of sample. Proc. Camb. Phil. Soc. 24, 180–190 (1928).

    Article  ADS  Google Scholar 

  44. Györgyi, G., Moloney, N. R., Ozogány, K. & Rácz, Z. Finite-size scaling in extreme statistics. Phys. Rev. Lett. 100, 210601 (2008).

    Article  ADS  Google Scholar 

  45. Cassandro, M. & Jona-Lasinio, G. Critical point behaviour and probability theory. Adv. Phys. 27, 913–941 (1978).

    Article  ADS  Google Scholar 

  46. Zucker, I. J. & Robertson, M. M. Exact values of some two-dimensional lattice sums. J. Phys. A 8, 874–881 (1975).

    Article  ADS  MathSciNet  Google Scholar 

  47. McPhedran, R. C., Botten, L. C., Nicorovici, N. A. & Zucker, I. J. Systematic investigation of two-dimensional static array sums. J. Math. Phys. 48, 033501 (2007).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

It is a pleasure to thank Maxime Clusel and Peter Holdsworth for very valuable comments and criticisms.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven T. Bramwell.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bramwell, S. The distribution of spatially averaged critical properties. Nature Phys 5, 444–447 (2009). https://doi.org/10.1038/nphys1268

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys1268

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing