Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Single-shot carrier–envelope phase measurement of few-cycle laser pulses

Abstract

Full characterization of single ultrashort laser pulses, as needed for attosecond metrology and spectroscopy, requires precise measurement of the offset between the electric field and pulse envelope, or carrier–envelope phase (CEP). Until now, all CEP measurements have been made by averaging over a large number of phase-stabilized laser pulses. Here, we demonstrate the first single-shot CEP measurement of intense few-cycle laser pulses. We focus a laser pulse on a gas target and detect photoelectrons emitted in opposing directions (‘left–right’) parallel to the polarization of the laser. By comparing the left–right asymmetries of photoelectrons at different energies, we mapped the CEP of consecutive non-phase-stabilized pulses on a parametric plot. This new evaluation method enables us to determine the CEP without phase ambiguity at unprecedented measurement precision. Future investigation of phase-dependent phenomena with CEP tagging at a much lower phase jitter than accessible at present with phase-stabilized lasers is now possible.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: ATI with few-cycle pulses.
Figure 2: Single-shot stereo-ATI phase meter.
Figure 3: Mapping the CEP of phase-stabilized and non-phase-stabilized consecutive laser pulses.
Figure 4: Evolution of the CEP of consecutive laser shots.

References

  1. Dietrich, P., Krausz, F. & Corkum, P. B. Determining the absolute carrier phase of a few-cycle laser pulse. Opt. Lett. 25, 16–18 (2000).

    Article  ADS  Google Scholar 

  2. Holzwarth, R. et al. Optical frequency synthesizer for precision spectroscopy. Phys. Rev. Lett. 85, 2264–2267 (2000).

    Article  ADS  Google Scholar 

  3. Jones, D. J. et al. Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis. Science 288, 635–639 (2000).

    Article  ADS  Google Scholar 

  4. Kienberger, R. et al. Atomic transient recorder. Nature 427, 817–821 (2004).

    Article  ADS  Google Scholar 

  5. Goulielmakis, E. et al. Single-cycle nonlinear optics. Science 320, 1614–1617 (2008).

    Article  ADS  Google Scholar 

  6. Brabec, T. & Krausz, F. Intense few-cycle laser fields: Frontiers of nonlinear optics. Rev. Mod. Phys. 72, 545–591 (2000).

    Article  ADS  Google Scholar 

  7. Corkum, P. B. Plasma perspective on strong field multiphoton ionization. Phys. Rev. Lett. 71, 1994–1997 (1993).

    Article  ADS  Google Scholar 

  8. Corkum, P. B. & Krausz, F. Attosecond science. Nature Phys. 3, 381–387 (2007).

    Article  ADS  Google Scholar 

  9. Tavella, F. et al. Dispersion management for a sub-10-fs, 10 TW optical parametric chirped-pulse amplifier. Opt. Lett. 32, 2227–2229 (2007).

    Article  ADS  Google Scholar 

  10. Renault, A. et al. Phase stability of terawatt-class ultrabroadband parametric amplification. Opt. Lett. 32, 2363–2365 (2007).

    Article  ADS  Google Scholar 

  11. Tsakiris, G. D., Eidmann, K., Meyer-ter-Vehn, J. & Krausz, F. Route to intense single attosecond pulses. New J. Phys. 8, 19 (2006).

    Article  ADS  Google Scholar 

  12. Fortier, T. M. et al. Carrier-envelope phase-controlled quantum interference of injected photocurrents in semiconductors. Phys. Rev. Lett. 92, 147403 (2004).

    Article  ADS  Google Scholar 

  13. Paulus, G. G. et al. Absolute-phase phenomena in photoionization with few-cycle laser pulses. Nature 414, 182–184 (2001).

    Article  ADS  Google Scholar 

  14. Paulus, G. G. et al. Measurement of the phase of few-cycle laser pulses. Phys. Rev. Lett. 91, 253004 (2003).

    Article  ADS  Google Scholar 

  15. Apolonski, A. et al. Observation of light-phase-sensitive photoemission from a metal. Phys. Rev. Lett. 92, 073902 (2004).

    Article  ADS  Google Scholar 

  16. Kreß, M. et al. Determination of the carrier-envelope phase of few-cycle laser pulses with terahertz-emission spectroscopy. Nature Phys. 2, 327–331 (2006).

    Article  ADS  Google Scholar 

  17. Telle, H. R. et al. Carrier-envelope offset phase control: A novel concept for absolute optical frequency measurement and ultrashort pulse generation. Appl. Phys. B 69, 327–332 (1999).

    Article  ADS  Google Scholar 

  18. Baltuska, A. et al. Attosecond control of electronic processes by intense light fields. Nature 421, 611–615 (2003).

    Article  ADS  Google Scholar 

  19. Roos, P. A. et al. Solid-state carrier-envelope phase stabilization via quantum interference control of injected photocurrents. Opt. Lett. 30, 735–737 (2005).

    Article  ADS  Google Scholar 

  20. Osvay, K., Görbe, M., Grebing, C. & Steinmeyer, G. Bandwidth-independent linear method for detection of the carrier-envelope offset phase. Opt. Lett. 32, 3095–3097 (2007).

    Article  ADS  Google Scholar 

  21. Haworth, C. A. et al. Half-cycle cutoffs in harmonic spectra and robust carrier-envelope phase retrieval. Nature Phys. 3, 52–57 (2007).

    Article  ADS  Google Scholar 

  22. Kling, M. F. et al. Imaging of carrier-envelope phase effects in above-threshold ionization with intense few-cycle laser fields. New J. Phys. 10, 025024 (2008).

    Article  ADS  Google Scholar 

  23. Lan, P., Lu, P., Li, F., Li, Y. & Yang, Z. Carrier-envelope phase measurement from half-cycle high harmonics. Opt. Express 16, 5868–5873 (2008).

    Article  ADS  Google Scholar 

  24. Mehendale, M., Mitchell, S. A., Likforman, J. P., Villeneuve, D. M. & Corkum, P. B. Method for single-shot measurement of the carrier envelope phase of a few-cycle laser pulse. Opt. Lett. 25, 1672–1674 (2000).

    Article  ADS  Google Scholar 

  25. Kakehata, M. et al. Single-shot measurement of carrier-envelope phase changes by spectral interferometry. Opt. Lett. 26, 1436–1438 (2001).

    Article  ADS  Google Scholar 

  26. Paulus, G. G., Nicklich, W., Xu, H., Lambropoulos, P. & Walther, H. Plateau in above threshold ionization spectra. Phys. Rev. Lett. 72, 2851–2854 (1994).

    Article  ADS  Google Scholar 

  27. Milošević, D., Paulus, G. G. & Becker, W. High-order above-threshold ionization with few-cycle pulse: A meter of the absolute phase. Opt. Express 11, 1418–1429 (2003).

    Article  ADS  Google Scholar 

  28. Chelkowski, S. & Bandrauk, A. D. Asymmetries in strong-field photoionization by few-cycle laser pulses: Kinetic-energy spectra and semiclassical explanation of the asymmetries of fast and slow electrons. Phys. Rev. A 71, 053815 (2005).

    Article  ADS  Google Scholar 

  29. Paulus, G. G., Lindner, F., Milosevic, D. B. & Becker, W. Phase-controlled single-cycle strong-field photoionization. Phys. Scripta T110, 120–125 (2004).

    Article  ADS  Google Scholar 

  30. Moon, E. et al. Reduction of fast carrier-envelope phase jitter in femtosecond laser amplifiers. Opt. Express 14, 9758–9763 (2006).

    Article  ADS  Google Scholar 

  31. Li, C. et al. Determining the phase-energy coupling coefficient in carrier-envelope phase measurements. Opt. Lett. 32, 796–798 (2007).

    Article  ADS  Google Scholar 

  32. Dombi, P. et al. Direct measurement and analysis of the carrier-envelope phase in light pulses approaching the single-cycle regime. New J. Phys. 6, 39 (2004).

    Article  ADS  Google Scholar 

  33. Cavalieri, A. L. et al. Intense 1.5-cycle near infrared laser waveforms and their use for the generation of ultra-broadband soft-X-ray harmonic continua. New J. Phys. 9, 242 (2007).

    Article  ADS  Google Scholar 

  34. Kornelis, W. et al. Single-shot kilohertz characterization of ultrashort pulses by spectral phase interferometry for direct electric-field reconstruction. Opt. Lett. 28, 281–283 (2003).

    Article  ADS  Google Scholar 

  35. Kane, D. J. & Trebino, R. Single-shot measurement of the intensity and phase of an arbitrary ultrashort pulse by using frequency-resolved optical gating. Opt. Lett. 18, 823–825 (1993).

    Article  ADS  Google Scholar 

  36. Nisoli, M. et al. Compression of high-energy laser pulses below 5 fs. Opt. Lett. 22, 522–524 (1997).

    Article  ADS  Google Scholar 

  37. Fuji, T. et al. Monolithic carrier-envelope phase-stabilization scheme. Opt. Lett. 30, 332–334 (2005).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank L. Veisz for advice during the measurements and F. Krausz for his support. G.G.P. acknowledges support by the Welch foundation (A-1562) and the Airforce Office of Scientific Research AFOSR. R.K. acknowledges financial support from the Sofja Kovalevskaja Award of the Alexander von Humboldt Foundation. The work was supported by the DFG Cluster of Excellence: Munich Centre for Advanced Photonics (www.munich-photonics.de).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Kienberger.

Supplementary information

Supplementary Information

Supplementary Information (PDF 128 kb)

Supplementary Information

Supplementary Movie 1 (MOV 2185 kb)

Supplementary Information

Supplementary Movie 2 (MOV 786 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wittmann, T., Horvath, B., Helml, W. et al. Single-shot carrier–envelope phase measurement of few-cycle laser pulses. Nature Phys 5, 357–362 (2009). https://doi.org/10.1038/nphys1250

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys1250

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing